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ABSTRACT

Game-Theoretic Approaches for Complex Systems Optimization

by
Shih-Fen Cheng

Co-Chairs: Robert L. Smith and Michael P. Wellman

A complex system is an artificial system that cannot be modeled analytically or opti-
mized in an effective manner, usually because it possesses the following properties: (1)
the system can only be modeled as a simulation, (2) the size ofthe problem is untenable,
so that even if the system could be modeled analytically, it would be impractical to solve
it exactly, (3) necessary information required for problemsolving is distributed in na-
ture. This thesis presents methods for modeling and optimizing systems with the above
challenging properties.

We first discuss the important modeling decision of whether to include stochasticity.
By employing a real-world case study, we show that a standardnumerical procedure can
indeed help us make this decision. Next, we use the challenging problem of finding
coordinated signal timing plans to motivate the need of a newparadigm for simulation
optimization. We employ the game-theoretic paradigm of sampled fictitious play (SFP)
to iteratively converge to a locally optimal solution. The key to the empirical success
of SFP is parallelization. Through parallelization, SFP isrobustly scalable to realistic
size networks modeled with high-fidelity simulations. Compared to other less adaptive
approaches, significant savings are achieved. This procedure is standardized so that we
can use it to solve many unconstrained discrete optimization problems. However, for
constrained problems, additional effort is required in using SFP. We introduce the idea of
feasible space mapping which, when combined with SFP, can beused in decomposing
and approximating large-scale dynamic programming models. With a large scale decision
making problem in automotive manufacturing, we demonstrate that high quality solutions
can be obtained by this approach in several orders of magnitude faster time than the
traditional global algorithm.

Finally, for distributed problems, we address the decentralization issue with a market-
based approach. The market-based approach involves: (1) agent strategy development,
(2) empirical game-theoretic analysis, (3) assessing efficiency of the solution obtained by
the market-based approach. We first introduce the market-based approach, with special
attention on the strategy-pruning techniques. We then use task allocation for dynamic
information processing environments as an example to illustrate the methodology and
demonstrate its effectiveness.

xiii



CHAPTER 1

Introduction

1.1 Scope of the Research

This thesis is devoted to the optimization of complex artificial systems. A “complex
artificial system”, by our definition, is a system with following properties: (1) the system
can only be modeled as a simulation, (2) the size of the problem is untenable, so that even
if the system could be modeled analytically, it would be impractical to solve it exactly,
(3) necessary information required for problem solving is distributed in nature.

In some cases, although the problem may look complicated at first sight, with a careful
modeling effort, we can use a far simpler model in representing the original problem
without losing modeling fidelity. With sufficient simplification, the global optimum to
the problem usually can be found in a reasonable amount of time. We should always look
for such opportunities to simplify the problem before abandoning our attempt to solve
the problem exactly.

However, in many practical examples, when all our efforts atsimplifying the model
have failed (here, failure in simplification means that if wesimplify the model any further,
the resulting model will be unrealistic and unrepresentative), we usually end up with a
model that is too huge to be solved by any exact algorithm. Fordifferent reasons to
be cited later, for both centralized and distributed cases,one of the more effective ways
to solve these optimization problems is through decomposition. Game theory will be
shown to be a useful tool for performing analysis in these decomposed resource allocation
problems. For centralized problems, the main questions considered are:

• How can we decompose the optimization problem? What is the general proce-
dure one can use to solve an optimization problem in the above“complex-system”
settings?

• What are the properties of a solution obtained in a game-theoretic manner?

• What is the complexity of obtaining solutions in decomposedproblems? How does
it compare to other competing algorithms, especially thosethat find global optima?

1



In Part I of this thesis, we try to answer the above three questions by investigating two rep-
resentative examples in simulation optimization and large-scale Markov decision process.
The study of these applications can help us in constructing ageneral framework for solv-
ing a general class of optimization problems in complex artificial systems.

For distributed problems, we consider markets as a mechanism for directing resource
allocation. In studying decentralized resource allocation problems, we are interested
in both empirical game-theoretic analysis and market-based approaches. The empirical
game-theoretic analysis focuses on techniques for estimating market games via running
simulations and solving for Nash equilibria (to be defined inChapter 2). On the other
hand, the market-based approaches focus on solving decentralized resource allocation
problems with market mechanisms. For these two topics, the main questions considered
are:

• How efficiently do markets allocate resources, when compared to other alternatives
and global allocation?

• How do we identify and quantify possible sources for the lossof efficiency in mar-
kets?

• How can we design approximated approaches (with proper error bounds) for search-
ing for Nash equilibria in a large game?

In Part II of this thesis, we try to answer the above three questions from two fronts,
empirical game-theoretic analysis and market-based approaches, respectively.

1.2 Organization

Chapter 2 provides a review of the basics of game theory. Important notation and
terms like “game” and “equilibrium” are defined. Related theorems are also listed for
completeness.

Chapter 3 presents a case study on the important modeling decision of whether to
include stochasticity [Chenget al., 2006]. Stochasticity is a common modeling feature in
many applications, however, including it without careful consideration would sometimes
bring in only limited benefits at extremely high cost in computation. The case study
presented in Chapter 3 demonstrates the use of a standard procedure for making this
decision empirically.

In cases where models inevitably become too big to be solved exactly, we need to
consider approximation algorithms. Part I covers how to approximately solve complex
discrete optimization problems under various conditions.The common theoretical tool
used from Chapter 4 to Chapter 7 is sampled fictitious play (SFP). The basics of SFP and
the motivation for using it in searching for solutions are introduced in Chapter 4.

Chapter 5 presents a parallel implementation of SFP on a challenging coordinated
traffic signal control problem [Chenget al., 2007]. The purpose of this chapter is to
demonstrate how one can use SFP as an off-the-shelf tool to optimize a black-box type

2



objective function with unknown properties and lengthy evaluation time. As demon-
strated in this chapter, for time-sensitive applications,parallelization of the algorithm is
extremely important, and SFP can be easily scaled up in a parallel mode in order to meet
this need.

Chapter 6 discusses how to approximate an optimal control policy with SFP in a
Markov decision process [Chenget al., 2005a]. The Markov decision process studied
in this chapter is used in modeling a joint optimization problem in general production
systems. The major challenge addressed in this chapter is the handling of non-trivial
constraints1. Chapter 7 then concludes the first part.

Part II is devoted to the study of market-based approaches for decentralized resource
allocation problems. Chapter 8 poses the challenges of decentralization, and motivates
the use of market mechanisms in dealing with it. Chapter 9 then provides an overview
on the empirical analysis methodologies that have been outlined by MacKie-Mason and
Wellman [2006].

Chapter 10 investigates the technique of strategy pruning,and its implications for the
quality of the solution [Cheng and Wellman, 2007]. By pruning unpromising strategies
aggressively, and accepting errors along the way, the method proposed in Chapter 10
enables us to analyze games we could not handle previously.

Chapter 11 presents a case study on a general task allocationscenario. This chapter
provides a thorough analysis of a typical decentralized resource allocation problem. It
serves as an example of how to use market-based approaches inreal-world applications.
We then conclude the second part in Chapter 12.

1It refers to any constraint that is not in the format ofl ≤ x ≤ u, wherel andu are constants.
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CHAPTER 2

Preliminaries: Basics of Game Theory

Let Γ be a finite game in strategic form, i.e., a game with finite number of players,
with each player’s action set being finite and non-empty, andthe payoff function being
well defined for all joint actions. LetN = {1, 2, . . . , |N |} be the set of players inΓ.
For each playeri ∈ N , let Si be the finite set of feasible actions. We usesi to denote
an element ofSi. Let S = S1 × S2 × . . . S|N | be the set of feasible joint actions by all
the players. We uses to denote an element ofS. The payoff function of playeri ∈ N
is denoted byui : S → ℜ. For convenience, we use the tuple[N , {Si}, {ui(s)}] to
represent a gameΓ.

For playeri ∈ N , let ∆i be the set of mixed strategies, i.e.,

∆i = {fi : Si → [0, 1] :
∑

si∈Si

fi(si) = 1}.

Let ∆ = ∆1 ×∆2 × . . . ∆|N |. For playeri ∈ N , we extendui to be its payoff function
in the mixed extension ofΓ. That is, for anyf ∈ ∆,

ui(f) = ui(f1, f2, . . . , f|N |) =
∑

s∈S

ui(s1, s2, . . . , s|N |)f1(s1)f2(s2) . . . f|N |(s|N |),

where we have assumed that players choose their actions independently.

Forg ∈ ∆ andfi ∈ ∆i, we use(fi, g−i) to denote(g1, g2, . . . , gi−1, fi, gi+1, . . . , g|N |),
which is a joint mixed strategy. We say thatg is a Nash equilibriumif all players play
strategies that are best responses to the others, as made precise in the following definition:

Definition 2.1 A strategy profileg is a Nash equilibrium (NE) of gameΓ iff for every
i ∈ N , fi ∈ ∆i, ui(g) ≥ ui(fi, g−i).

Nash [1950] proved that every finite game in strategic form has a mixed-strategy NE. We
also define an approximate version of NE.

Definition 2.2 A strategy profileg is anǫ-Nash equilibrium (ǫ-NE) of gameΓ iff for every
i ∈ N , fi ∈ ∆i, ui(g) + ǫ ≥ ui(fi, g−i).
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A belief path{f(t)}∞t=1 is a sequence in∆. We say that the belief path{f(t)}∞t=1 con-
verges to equilibrium if every accumulation point of{f(t)}∞t=1 is an equilibrium. That is,
a belief path that converges to an equilibrium is eventuallyarbitrarily close (in Euclidean
norm in an appropriately defined Euclidean space containing∆) to some equilibrium of
the mixed extension ofΓ.

Two special classes of games are of particular interest in this thesis: games with
identical interests, and games that are symmetric with respect to payoffs. These two
classes of games are defined as follows:

Definition 2.3 A game in strategic form is said to have identical interests if for all s ∈ S,
u1(s) = u2(s) = . . . = u|N |(s).

Definition 2.4 A game in strategic form is symmetric if for alli, j ∈ N : (a) Si = Sj ,
and (b)ui(si, s−i) = uj(sj, s−j) wheneversi = sj ands−i = s−j .

For a detailed description of important concepts in game theory, please see Fudenberg
and Tirole [1991].
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CHAPTER 3

When to Include Stochasticity: A Case Study of
End-State Planning Problem in Production Lines

Building models for optimization problems is sometimes more like art than science.
Important modeling decisions, like identifying importantfeatures, evaluating the value of
each candidate feature, and balancing between simplicity and realism, are usually based
on intuition and the process of trial-and-error.

In many applications, properly accounting for stochasticity is usually the single most
important consideration in building models. The decision on whether to model stochas-
ticity or not is tough to make and it may be tempting to includeit whenever uncertainty is
observed in the model. However, extending a model without careful consideration usually
results in an unsolvable model. Worse, even in cases where wecould solve the augmented
models, it is not clear if the benefits we would enjoy would always be significant.

In this chapter, we look at a challenging real-world scenario on end-state planning
in production lines. Whether we should incorporate stochasticity or not is an important
decision we must make in this case study. We use the expected difference between the
perfect information model and the nominal model to estimatethe potential gain we can
get by considering stochasticity. This measure provides valuable information in making
our final modeling decision.

This chapter is organized as follows. Section 3.1 presents the background and the
motivation for formulating the end-state problem. Section3.2 introduces an abstract
production line model; with this model, the problem of finding an optimal shutdown
schedule when considering both end-state and production goals is then formally stated.
Section 3.3 presents an efficient dynamic programming formulation for finding the opti-
mal shutdown schedule. Section 3.4 describes some special cases where the problem can
be solved even more efficiently. Section 3.5 summaries computational experiments, with
special attention placed on computing the potential benefitof considering stochasticity.
Finally, Section 3.6 concludes the chapter, and discusses our lessons from this case study.
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3.1 Introduction

Maximizing equipment utilization is essential to the profitability of capital-intensive
production processes. Although much research addresses the problem of how to min-
imize system downtime, little has been written about how to most effectively use the
remaining downtime for a variety of critical tasks such as preventive maintenance, cali-
brations, installations, and upgrades that can be performed only when the system is down.
Complicating this challenge is the fact that the contents ofthe production system when
it shuts down may constrain the performance of such downtimetasks. For example, in a
production line consisting of stations separated by buffers, consider the task of upgrading
a particular station. Safety or accessibility needs might dictate that this station be empty
of jobs if the upgrade is to be performed. Moreover, validating the upgrade requires a
supply of jobs of appropriate types immediately upstream ofthe station, together with
sufficient empty space downstream to accept these jobs afterthey are processed. The
challenge of achieving as many such requirements (which will be called end-state goals
in the rest of the chapter) as possible while trading off potential lost production or over-
time costs is often an exceedingly difficult optimal controlproblem. To our knowledge,
this problem has not yet been addressed in the literature. Inthis chapter we present a
dynamic programming model for computing a production system control policy that op-
timizes the expected value of the system shut-down. Note that although we specifically
discuss an automotive assembly application, this methodology is applicable to any sys-
tem involving work-in-process inventory. Examples include oil refineries, semiconductor
manufacturing, transactional back-office operations, andnew product development and
introduction pipelines. Cheunget al. [2004] described one such example faced by chem-
ical production facilities.

3.2 A Graph Model of the End-State Planning Problem

In this section we introduce the use of a graph model in representing production
line. Relying on this representation, we then formally define the optimization problem of
satisfying end-state goals considering the cost of overtime and lost production time.

3.2.1 A Graph Model for Representing Production Lines

A typical production line contains three types of elements:work stations that are
used in accomplishing certain manufacturing tasks (part processing, assembling, to name
a few), buffers that are used to store work in process, and connectors that connect work
stations and buffers. In most cases, work in process can onlybe stored in buffers or work
stations, therefore, when defining end-state goals, we assume that only work stations and
buffers will have end-state goals defined.

An end-state goal for each production line element (work station or buffer) is rep-
resented as a collection of constraints on its content (which can be a list of allowable
types of jobs, or simply a job count) when the production linecomes to a full stop. In
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general, satisfying all requirements may not always be possible because: 1) the provided
build schedule1 may cause conflicts among stations or buffers, and 2) satisfying all re-
quirements may require unreasonable overtime, or it may require the line to be shut down
very early, which can be prohibitively expensive. These potential conflicts, as mentioned
above, are what make the end-state planning problem challenging.

By defining work stations and buffers (both referred to asline elementsin the rest of
this chapter) as nodes, and connectors/conveyors as arcs, we can describe a general class
of production lines as directed graphs. However, to simplify the problem, we will focus
on the most commonly seen topology, serial line topology, for the rest of the chapter.
Moreover, in our graph model, we will assume that shutdown decisions are only made at
nodes (i.e., line elements). A graph for the serial line topology can be seen in Figure 3.1.
Note that for the convenience of later explanation, we will assume that line elements are
labeled from the tail of the line to the head of the line. Jobs numbered from 1 toJ will
enter the line at line elementN and exit at line element 1.

. . .J 1

Units Inflow

. . . 12N N−1

j1j2jN−1jN

Figure 3.1: A serial production line. The jobs enter the production line at line element
N , and exit at line element1.

We will now formally introduce notation used in defining the end-state planning prob-
lem:

• Let N be the number of line elements in the production line.

• Let N be the set of line elements. Line elements are numbered starting from the
end of the line. Thus, the last line element will have an ID of 1, while the first line
element will have an ID ofN . The reason for this numbering system will become
clear later.

• Let A = [aij ], i, j ∈ N be the adjacency matrix. If there is a link leading from line
elementi to line elementj, aij = 1, otherwiseaij = 0.

• Let G = (N, A) be the directed graph representing the production line.

• Let J be the number of jobs flowing into the production line.

• Let J be the ordered set of IDs for the jobs flowing into the production line. It is
assumed that jobs in this set will enter the production line one by one, starting with
the first job.

1A build schedule for a production line is a list of jobs to be processed in order. Usually some vital
job-related information will also be included in the list. In our case, the style of each job is required.
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• Let mn be the capacity of line elementn, n ∈ N.

• Let rn be the tuple that describes the list of jobs contained inn, n ∈ N.

• In our formulation, we define a goal associated with each lineelementn asRn,
whereRn is a set of acceptable tuples in the format(i1n, . . . , imn

n ), n ∈ N, whereikn
refers to a particular job type.

• Let Td be the desired line shutdown time, e.g., the end of the normalshift. A
penalty is assessed if our shutdown schedule induces a shutdown time other then
Td.

3.2.2 The Formal Definition of the End-State Planning Problem

The goal of the end-state planning problem, as described earlier, is to find shutdown
schedules for all line elements in a production line, so thatthe value of meeting end-state
goals minus costs from running overtime or lost production time, is maximized. To make
this statement precise, we need to specifically define: 1) what constitutes a shutdown
schedule? and 2) how do we know if an end-state goal is satisfied?

The shutdown schedule at some line elementn, n ∈ N, can either be an absolute
time, tn, or a job ID,jn, wherejn specifies the job ID of the last job to be released from
line elementn. Given that the service time at the line element may be stochastic, we
choose to usejn in order to have better control over the production line (since the time
when a job reaches a line element may be uncertain).

At the end of the horizon (when all line elements are shut down), if the tuple of jobs
within line elementn, rn, is in the setRn, a valuevn will be awarded, otherwise, a
valuepn will be penalized. Note that in practice, our goalRn may be generated from
a fairly general statement (e.g., 5 vehicles regardless of their styles), and thus checking
goal fulfillment by tuple matching is obviously very inefficient in these cases (the size of
Rn will be very large in these cases). Here we suggest the tuple matching mechanism
just to explain the concept. In practice, the goal matching can be more specialized, e.g.,
we can use predicates≤, ==, and≥ on the number of jobs in a line element, and we can
define an end-state goal as a logical statement: (number of jobs in line elementn) == 5.

Assuming the system can be simulated, we can view the simulation as a function,
F ({jn}, Tmax), that takes the decisions at the line elements,{jn}, and the upper bound
on the production line running time,Tmax, as inputs. The outputs of the simulation are
(Ts, {rn, n ∈ N}), whereTs represents the time at which the production line comes to a
full stop2 as a result of the decisions, andrn represents the state of line elementn at the
time the line stops. In our formulation,Td is defined as the desired stopping time. When
Ts > Td, overtime cost will be incurred. Alternatively, ifTs < Td, a penalty associated
with lost production time will be charged. We denote unit overtime cost bypo, and unit

2Note that since line elements in the production line may stopat different times, the shutdown time of
the line is defined as the maximal shutdown time observed.
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lost production penalty bypl. The problem can thus be formally defined as:

max
j1,...,jN

∑

n∈N

[Invn − (1− In)pn]− po(Ts − Td)
+ − pl(Ts − Td)

− (3.1)

s.t.

(Ts, {rn, n ∈ N}) = F ({jn, n ∈ N}, Tmax)

In =

{

1 , rn ∈ Rn

0 , o/w
, ∀ n ∈ N

jn ∈ J, n ∈ N

3.3 Deterministic Dynamic Programming Formulation

The key challenge we must address in the model is deriving analytical expressions
for rn, n ∈ N, andTs.

3.3.1 Deriving End States from the Shutdown Schedule

To derive end states from the shutdown schedule, we require that the shutdown sched-
ule be jointly feasible in the sense that for each line element n, n ∈ N, job jn will
eventually be processed at line elementn.

For two consecutive line elementsn − 1 andn, jn must be at leastjn−1. And since
the difference ofjn andjn−1 indicates the number of jobs left in line elementn − 1, we
require thatjn − jn−1 ≤ mn−1. Summarizing the above two observations, the values for
jn are thus constrained as follows:

jn ∈

{

J n = 1
{jn−1, jn−1 + 1, . . . , jn−1 + mn−1} n > 1

(3.2)

With all jn feasible, the end state of line elementn can then be obtained as follows:

rn = {jn + 1, . . . , jn+1}, n < N, (3.3)

where line elementn is empty if jn = jn+1. However, the contents of line elementN
cannot be decided directly, because bothjn andjn+1 are required in order to decide line
elementn’s content. To handle this special case, we can define a dummy element in front
of line elementN , so that its content can be explicitly controlled. With the introduction
of the dummy element,rN can also be determined similarly to (3.3).

3.3.2 Computing Shutdown Time from the Shutdown Schedule

Let tj,n be the processing time for jobj at line elementn, andej,n be the time when
job j exits line elementn. For jobj, at the time when it finishes processing at elementn,
it can move on to the line elementn − 1 if there is spare capacity available, otherwise it
will wait in the current element until the job in elementn− 1 finishes processing. From
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this observation, and the assumptions that the production line is linear and all parameters
are deterministic, we can computeej,n iteratively:

ej,n = max{ej,n+1 + tj,n , ej−1,n + tj,n , ej−mn−1,n−1} , j = 1, . . . , J , n = 1, . . . , N.
(3.4)

Equation (3.4) describes three requirements for a job to move from line elementn + 1 to
line elementn. To simplify the formulas, letej,n be 0 if eitherj ≤ 0 or n ≤ 0 or n > N .
We will explain what each term means as follows. The first term, (ej,n+1 + tj,n), states
that jobj must exit preceding elementn+1 before entering elementn. The second term,
(ej−1,n + tj,n), states that preceding jobj − 1, must finish processing at elementn before
job j can be processed at elementn. The third term,ej−mn−1,n−1, represents the time
when the first job in elementn − 1’s queue exits. This time matters if elementn − 1’s
queue is full when jobj finishes processing at elementn. In this case, jobj cannot exit
elementn until the head job in elementn−1 exits. Taking the maximum over these three
terms guarantees that all requirements are met when jobj exits elementn.

Obviously, the production line shutdown time can be directly computed from{ej,n}
and collection of decisions{jn}, as:

Ts = max
n∈N
{ejn,n}. (3.5)

Let Tn be the maximal shutdown time from line element1 to n, then the production
line shutdown time can also be computed recursively by:

Tn = max{ejn,n, Tn−1}, (3.6)

andTs = TN .

3.3.3 Dynamic Programming Model

From the above assumptions and derivations, we can see that this problem can be cast
as a sequential decision process, where each line element, starting from line element 1,
successively makes a decision. From Equation 3.2, we can seethat for line elementn to
make a “feasible” decision, it must knowjn−1. Also, as shown in (3.4), the time when
each job leaves each line element can be computed a priori andis considered given input
data for the problem.

From the above descriptions, we can see that the minimal amount of information re-
quired to make an optimal decision at each line element includes: n, the current line
element ID;j, the decision from the downstream line element; andTn−1, the maximal
shutdown time up to line elementn − 1. The reward/penalty for choosing decisionjn

at line elementn can be obtained by first computing end-state tuples according to equa-
tion (3.3), and by looking up the end-state tuples in the goalset, we can have the re-
ward/penalty. Note that we can calculate the reward/penalty at line elementn only after
we have made a decision for line elementn + 1. This is due to the fact that the contents
of elementn are not known until the decision at elementn + 1 is made (see Equation
3.3). Because of this, we will have to insert a dummy element in front of line element

11



N in order to control the content of line elementN . This dummy element is assumed
to have zero cycle time and capacity large enough to hold all the jobs. With these two
assumptions, the addition of this dummy element will not affect other part of the model
except granting us the ability to control the content of lineelementN .

When we reach line elementN + 1, the beginning of the line, we will haveTs, and
the overtime/lost production cost can be computed accordingly.

The DP formulation is formally described as follows:

• The state for the DP is defined as(n, j, T ):

– n is the stage variable, representing the ID of the current line element,

– j is the decision from elementn− 1, it serves as the lower bound onjn,

– T is maximal shutdown time of line elements from 1 ton− 1.

Note that forn = 1, there is no elementn−1, thus there is only one state forn = 1,
and that is(n, 0).

• Feasible decision at state(n, j, T ):

jn ∈

{

J , n = 1
{j, j + 1, . . . , j + mn−1} , n > 1

(3.7)

• Reward function at state(n, j, T ) with decisionjn:

V (n, j; jn) = (In−1 · vn−1 − (1− In−1) · pn−1) , 2 ≤ n ≤ N + 1 (3.8)

rn−1 = {j + 1, . . . , jn}

In−1 =

{

1 , rn−1 ∈ Rn−1

0 , o/w

• Overtime and lost production: overtime and lost productionis only charged at the
line elementN + 1, by using the formula:

L(T ) = po(T − Td)
+ + pl(Td − T )+ (3.9)

• Functional equation at state(n, j, T ): maximal value one can get by acting opti-
mally from line elementn to N , if current state is(n, j, T ).

Forn = 1:
f(n, 0) = max

jn∈J
{f(n + 1, jn, ejn,n)} (3.10)

For2 ≤ n ≤ N :

f(n, j, T ) = max
jn feasible

{V (n, j; jn) + f(n + 1, jn, max{T, ejn,n})} (3.11)

Forn = N + 1:

f(n, j, T ) = max
jn feasible

{V (n, j; jn)− L(T )} (3.12)

• The answer:f(1, 0)
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Starting Production Line with Initial Content

In the DP model described in the previous section, we implicitly assumed that the
production line is started empty, with job 1 just about to enter the line. This restriction
can be easily lifted. We can emulate the effect of starting the production line with given
initial content by pruning proper states from the DP.

Suppose we are given an initial state of the system, indicating the position of each job.
Let pk be jobk’s initial position (a line element ID). If jobk has not entered the system,
let pk be∞. We can see that since jobk starts at line elementpk, all line elements
upstream (with ID greater thanpk) cannot use jobk as shutdown decision. As a result,
states(n, j, T ), wheren > pk, j ≤ k, and∀ T , will be pruned.

Computational Complexity of DP Formulation

Here we compute an upper bound on the computational effort required in solving the
above dynamic program. The number of floating point operations required for computing
a functional value for each state(n, j, T ) is approximately:

An =

{

(mn + 1)(tv + 4) + mn , 1 ≤ n ≤ N
(mn + 1)(tv + 1) + mn , n = N + 1,

wheretv is an upper bound on number of floating point operations required to compute
V (n, c; cn). Given thatn = 1, . . . , N + 1, j = 1, . . . , J , T = 1, . . . , Tmax, the total
number of floating point operations required is:

N
∑

n=1

J · Tmax((mn + 1)(tv + 4) + mn) + J · Tmax((mN+1 + 1)(tv + 1) + mN+1)

= N · J · Tmax((m̄n + 1)(tv + 4) + m̄n) + J · Tmax((mN+1 + 1)(tv + 1) + mN+1)

= J · Tmax(N · m̄n(tv + 5) + mN+1(tv + 2) + 2tv + 5) ,

wherem̄n is the mean capacity of the line elements.

From the model data based on the GM Lansing Grand River assembly plant, we can
roughly conclude that̄mn is 1.167. Taking, for example,N = 66, J = 200, Tmax = 4800
(seconds), we can obtain a numerical lower bound for the complexity:

J · Tmax(N · m̄n(tv + 5) + mN+1(tv + 2) + 2tv + 5)

≈ 7.394 · 107tv + 3.697 · 108,

Modern CPUs, with operating frequency measured in GHz, can provide computa-
tional performance in the range of several GFLOPS (109 floating point operations per
second). Suppose we are equipped with a machine with one GFLOPS capability, and let
tv be 100 (a number used for illustrative purpose); the problemcan then be solved within
10 seconds. Even withtv = 1000, the problem can still be solved within 2 minutes.
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3.4 Special Cases: Strip-All and Exact Job-Count Goals

When the problem features certain goal structures, we can find optimal shutdown
plans much faster by exploiting these goal structures. To bemore specific, we will look
at two commonly seen goal structures: (1) strip-all goals that seek to remove all jobs
from the system. This type of goals are commonly seen during major shutdowns, like
the semiannual shutdowns in automotive plants. (2) Job-count goals that specify desired
number of jobs, regardless of types, in certain line elements.

To further simplify these special cases, we assume that achieving these goals has
highest priorities, and thus we will always try to fulfill these goals if feasible.

In section 3.4.1, we will discuss the strip-all goals. In section 3.4.2, we will discuss
exact job-count goals.

3.4.1 Strip-All Goals

First note that in order to keep a line element empty, we only have to make the same
decisions for the current element and the previous element.Since our goal is to strip
all line elements, this implies that decisions at all line elements should be the same.
Therefore, the only effective decision we need to make is forline element 1 (the tail of
production line). Once this decision is made, decisions forall other line elementn > 1
will be the same (as discussed earlier in the section, we wantto fulfill all the goals when
feasible). Checking the reward function, we see thatL(T ) = po(T −Td)

+ + pl(Td−T )+

is the cost we want to minimize. Sinceei,j, the time when jobi exits line elementj, is
monotonically increasing ini (given somej), and monotonically decreasing inj (given
somei), T can be found asei,1 that minimizesL(T ). This can be achieved by performing
a binary search onei,1, i = 1, . . . , J , with complexityO(ln J).

3.4.2 Exact Job-Count Goals

Job-count goals is usually stated as: “line elementi should be left with at least/at
most/exactlyn jobs”. In this section, we will focus on theexactjob-count goals.

Supposeni > 0, i ∈ B ⊆ N, is number of jobs that should be left at line elementi
at shutdown.ni is then an exact job-count goal specified for line elementi. For all other
line elementsj ∈ N\B, strip-type goals are assumed, i.e.,nj = 0, j ∈ N\B. Similar to
the case where we have strip-all goals, when exact job count,ni, is specified for the line
elementi, it implies that the difference betweenji andji+1 should beni. Therefore, when
the decision at certain line elementi is fixed atji, the decisions at other line elements can
be determined as follow:

jk =

{

jk−1 + nk−1 k = i + 1, i + 2, . . . , N
jk+1 − nk k = i− 1, i− 2, . . . , 1

(3.13)

Following the procedure in section 3.4.1, we can find aj1 that minimizesL(T ). By using
(3.13), we can find decision at all other line elements. Ifeji,i ≤ Td, ∀i ∈ N, we are done.
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Otherwise, (a) pick arbitraryi ∈ B with eji,i > Td, search for neŵji such thateĵi,i
≤ Td.

(b) Update alljk, k ∈ N by using (3.13). Repeat step (a) and (b) untileji,i ≤ Td, ∀i ∈ N.
In the worst case, the complexity will beO(|B|(lnJ + N)).

3.5 Computational Experiments

To demonstrate the benefit of using DP for the end-state planning problem, we use a
hypothetical yet realistic end-state situation from the real production line, with parame-
ters tweaked in order to preserve business secrecy.

In this section, we first describe the scenario. After that, we compare the performance
of optimal policy obtained by our DP model and other “rule-of-thumb” policies. Finally,
we examine the potential benefit we can gain if we explicitly consider stochasticity.

3.5.1 Description of the Scenario

An automotive plant is preparing for the launch of a new model, concurrently with the
production of old models. This requires the installation ofnew equipment, calibration of
new and old equipment, and verification that new equipment ornewly calibrated equip-
ment can still produce the existing model. At this time, suppose the plant is just starting
to produce manufacturing validation builds — the first prototype builds of the new model
built at the plant. Call the current model types 1, 2, and 3 andthe model being launched
type 4.

In our case study, we focus on two zones, engine compartment (EC) and underbody
(UB) (as seen in Figure 3.2 and Figure 3.3), in an automotive body shop line. In both
Figure 3.2 and Figure 3.3, larger squares labeled with identification numbers represent
stations, smaller round squares labeled with capacities represent buffers. These two zones
are both linear and connection is made from EC zone to UB zone.Therefore these two
zones combined can be treated as a linear production line (asrequired by our model).

Transfer to

10 80 11020 50 130 2 160 1 180 2102 2

240

3 260 1132011380390400 350360 340

1 2 2 1

300

Start Area

Underbody Zone

Figure 3.2: Schematic graph for the engine compartment zone.

Let lost production costs be 10/minute when early shutdownsare required, and over-
time production costs be 5/minute (these are representative of real values with proper
scalings). Let the goals be classified as low, medium, and high value. Low value goals
earn 1 if achieved, cost 1 if not achieved. Medium value goalsearn 5 if achieved and cost
3 if not achieved. High value goals earn 20 if achieved and cost 7 if not achieved (these

15



Virtual line element for the 8−job area
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Figure 3.3: Schematic graph for the underbody zone.

values are approximate, but of the right scale). The desiredgoals are defined as follows:

1. The launch activities are causing more frequent downtimein the EC and UB ar-
eas, as these are the first impacted by new equipment. To prevent starving of the
downstream system it is desirable to fill every station and buffer position in these
areas with a vehicle of some sort. As each extra job will only marginally impact
throughput, this implies a low value goal for each station and each buffer.

2. EC stations 20, 50, 80, 130, 180 and 260 are load stations. These should be empty
to allow verification that material can be loaded into them from newly modified
conveyor systems. (Note that this is in conflict with the goalabove). Each of
these goals is of medium priority, since the tests can be delayed, although this will
slightly delay the launch. If critical, vehicles could be manually offloaded, at cost,
from the line to empty these stations.

3. EC station 160 should have a job in it of type 4 to allow for training of the welding
robot to follow a new weld-path for it. This is a high prioritygoal since this test is
critical to launch timing. The buffers immediately before and after this job should
be empty to allow engineers leeway to stop the line to better examine issues as
this validation build progresses through the system. Theselatter goals are of low
priority, since the only impact of not achieving them is lower throughput.

4. EC station 300 and 320 were re-calibrated yesterday to better process the new
model. Unfortunately, there is worry that this may have caused problems with the
calibration for model type 2. These two stations and their immediately preceding
buffers should contain models of type 2 to allow for testing.These goals are of
high priority since it is unacceptable to produce low quality current vehicles and it
is very difficult to test the calibration in any other way. Theremainder of the line
after these stations should be empty to allow for jobs to be moved through stations
300 and 320. These goals are of medium priority, since they could be manually
achieved at medium cost if not achieved through the actual end-state.

5. In the underbody line, new equipment is being installed for station 350. To en-
sure adequate working space, the area from station 330 to 370inclusive must be
emptied. These are medium priority goals since vehicles maybe removed, at some
cost.
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6. In the underbody line, the 8-job area from the buffer priorto station 260 up to the
buffer prior to station 330 should include 2 jobs of each typeto allow for testing
of the new equipment. Achieving the sequence of types such as1-2-3-4-1-2-3-4
in this area is a high priority goal, since it is important to test whether the new
equipment can adjust to a change of models. In fact, any sequence where the four
types are cycled through in two sets of four jobs is acceptable to satisfy this high-
priority goal. (Note: This is an example of mutually exclusive goals.) A less good
test would be a sequence where each type appears twice among the 8 positions, like
1-2-1-2-3-4-3-4. This is a medium priority goal. An even lower value goal is for
each type to appear at least once among the 8 positions. This is a low priority goal.

7. All of the respot stations (140, 180, 210, 220, 240, 260) are slated for re-calibration
this evening for jobs of type 1 or 4. Having either a job of type1 or 4 in each such
station is a medium priority goal.

8. To enable precise measurements, the geometry setting stations, 80 and 120, should
be emptied. This is a medium priority goal. Verification of these measurements
requires that the job immediately preceding these stationsbe of type 4. These are
medium priority goals.

Special attention should be paid to item 6 since the goals defined in item 6 are asso-
ciated with a range of line elements, instead of a single lineelement as required by our
model. To model this type of goals without modifying the DP model, we define avirtual
line elementfor the range specified by the planner. In our example, the area beginning at
the buffer prior to station 260 up to the buffer prior to station 330 in the underbody zone
are viewed as a virtual line element (as drawn in Figure 3.3),with capacity 8 (the sum
of capacities of contained line elements), and processing time equals to the sum of the
processing times of contained line elements3.

Finally, we have the following information:

• Desired shutdown timeTd: 4,200 seconds.

• Maximal allowed shutdown timeTmax: 4,800 seconds.

• Number of jobs: 200

• The line is initialized empty.

With this information, we are ready to solve for the optimal policy.

3Let n be the virtual line element. If goals are defined on line elements inside this virtual line element,
we must modify the reward function when we compute the optimal decisions at line elementn + 1 (the
decision made at line elementn + 1 determines the content of the virtual line element). For each feasible
decisionjn+1, besidesV (n+1, j; jn+1) (as defined in Equation (3.8)) which looks at the goals definedon
the virtual line element, we must also consider values and penalties from the goals associated with sub-line
elements of the virtual line element. This sub-problem can be solved by a DP formulation similar to the
grand DP.
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3.5.2 The Optimal Policy and Alternatives

The test instance can be solved within 90 seconds on a Pentium-4 3.4 Ghz PC under
RedHat Linux. With the optimal policy, the production line stops at 4,189 seconds (11
seconds earlier than the desired time), and out of 93 goals defined, we have achieved
69 goals, with the value from goals equals to 189 (the value from goals includes both
rewards for achieving goals and penalties for missing goals). For each line element, we
can compute the maximal achievable value by considering conflicting goals. To illustrate
the gap between potential values and realized values, we plot both maximal achievable
values and realized values in Figure 3.4. In Figure 3.4, greybars represent the upper
bounds on values achievable at all line elements, and the black bars are the value realized.
If achieved value matches the bound, it is all black, otherwise, the gap is revealed in grey.
We also plot each line element’s shutdown time in Figure 3.5.
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Figure 3.4: Maximal achievable value and value obtained in optimal policy.

As described in Section 3.5.1, every line element within thesystem is associated with
at least one goal, and many line elements are associated withmore than one goals, usually
conflicting with each other. With 93 goals in the system, and having to make a reasonable
trade-off between overall system shutdown time and which goals to satisfy, it is fair to
say that it is impossible for a human planner to manually comeup with shutdown plans
near the quality of the optimal policy we obtain.

Just as a quick comparison, we can use one rule of thumb obtained from the field to
see how well one can perform under customary rules. This ruleof thumb states that the
plant should be shut down as close to the desired shut down time as possible, and if any
goal can be achieved while meeting this objective, it will beacceptable.

Again, even for this simple principle (stops production line at some predetermined
time), it is extremely difficult to come up with a plan that would comply to this constraint,
and maximizing the value we can get by meeting the goals. In fact, it is as hard as the
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Figure 3.5: Shutdown time for each line element.

original problem. However, we can quantify the least loss this constraint would bring to
the value we can get.

In our experiment, we simply assume that the planner (who hasthis constraint in
mind) can somehow come up with an optimal plan under this constraint. The difference
between this plan and the true optimal plan can then be viewedas the lower bound on the
value that can be lost by implementing such rule (a very conservative one, since a human
planner is not optimizing the goal satisfaction while shutting down the line).

Empirically, this rule can be emulated by setting overtime and lost production time
cost to extremely high values, and running the same solver again. The resulting policy
should then return a stopping time as close to the desired time as possible (while meeting
goals optimally).

For this case, the found policy will shutdown the system exactly at 4,200 seconds,
as desired (the production shutdowns 11 seconds earlier in the original case). However,
the number of goals that can be achieved drops from 69 to 65, and the value from goals
also drops from 189 to 156, implying that by requesting that we must stop as close to the
desired time as possible, we are missing the opportunity of meeting high-value goals.

3.5.3 The Potential Benefits of a Stochastic Model

Up to this point we have assumed that the model is deterministic. However, one may
wonder whether it is necessary to include stochasticity in the model in order to better
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describe the scenario. Extending our model in order to incorporate stochastic events
is not straightforward, and it makes our model significantlylarger. Therefore, before
delving into the details on the expansion of the model, we would like to quickly measure
the potential benefit we can get by considering stochasticity. In this section, we first
describe the origin of the stochasticity, and then we discuss how to estimate the value of
stochastic model without having to construct one.

In the case studied here, the stochasticity comes from the operation of each line el-
ement. In the deterministic model, it is assumed that line elements operate smoothly
without breakdowns. However, unexpected glitches happen at times, and they usually
cause unexpected delay in the job processing. The followingparameters are used to char-
acterized the operation of every line element:

• Cycle time: time required to process a particular job. According to the operational
experience, it is fair to assume deterministic cycle times for all line elements.

• Mean cycles between failure (MCBF): as its name suggests, MCBF specifies on
average, how many cycles are required to see the next failure. It is assumed that
“cycles between failure” is a random variable following an exponential distribution.

• Mean time to repair (MTTR): MTTR specifies how much time is required to repair
a downed line element and restore its operation. It is also assumed that “time to
repair” is a random variable following an exponential distribution.

The realizations of “cycles between failure” determine when a line element goes down
during the planning horizon (each line element may go down multiple times). If line
elementn is down when it is processing jobj, an additional amount of repair time,
drawn from the time-to-repair distribution, will be required besides standard cycle time to
complete the job. With this simple rule and the above information, we can then generate
ej,n, for all job j and line elementn, using Monte Carlo simulation.

For every randomly generated instance, we can measure the performances of poli-
cies generated under different modeling assumptions, namely, perfect information model,
stochastic model, and deterministic model, by executing each policy in this realized in-
stance. The differences among these three models are the amount of information available
to them. The perfect information model, as its name suggests, has access to all the re-
alized information. For the stochastic model, the distributional information of random
variables is available. For the deterministic model, only the means of random variables
are available. By performing this type of analysis on a largenumber of instances, we can
then estimate the expected performance of the policies generate under the above three
modeling assumptions.

Let the expected performance for perfect information model, stochastic model, and
deterministic model beEVPI, EVS, andEVD, respectively. SinceEVPI ≥ EVS, the value
of upgrading to a stochastic model from a deterministic model , (EVS − EVD), can be
bounded as follows:

EVS−EVD ≤ EVPI−EVD (3.14)
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Since the realizations ofej,n are available to the perfect information model, we can find
the optimal policy for the perfect information model by using the same deterministic
solver loaded with realizedej,n. With this setup, we can estimateEVPI andEVD for
the scenario as described in Section 3.5.1. Surprisingly, for 30 random instances we
generated,EVPI = EVD. This implies that even when we consider the stochastic events
of line elements breaking down, the policy generated deterministically performs as well
as the policy generated with perfect information. According to (3.14), for this scenario,
there is no point in including the stochastic features in themodel.

3.6 Conclusion

In this chapter, we demonstrate a simple numerical procedure for measuring the value
one can get from “upgrading” deterministic models to stochastic ones. As shown in this
case study, the use of such tool can keep the model simple while providing a confidence
on the error bound for neglecting stochasticity.

However, it is not always possible to ignore stochasticity.In cases where we are
forced to extend the model, we have to carefully consider thetrade-off between model
complexity and the benefits of being more realistic. After all, no mater how realistic the
model is, if we cannot solve it, it has limited value to us. Beginning in next chapter,
we will engage in a discussion of methods that can help us dealwith these additional
model complexities, hence allowing us to build much complicated models than previously
allowed.
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PART I

Sampled Fictitious Play Algorithm for
Large-Scale Discrete Optimization

Problems

CHAPTER 4

An Introduction to the Sampled Fictitious Play Algorithm

As mentioned in Chapter 1, optimization problems in complexartificial systems are dif-
ficult to solve due to (1) discreteness, (2) lack of nice properties in objective function,
and (3) size. Decentralization issues will be put off until Part II, and for now assume all
problems can be solved centrally. The above three difficulties, when combined together,
will result in combinatorial explosions of decision spaces, and in almost all cases no ex-
act polynomial algorithm is known to exist. As a result, a great number of heuristics that
aim at approximating a global optimum have been developed for a wide variety of such
problems. Unfortunately, those heuristics are usually problem-specific and are not easily
applicable to other classes of problems.

In recent years, researchers have been actively working on heuristics that can be used
in solving a general class of combinatorial optimization problems. It was Glover [1986]
who first coined the termmetaheuristic, when he describedtabu searchas a method that
superimposes on another heuristic. Since then, metaheuristic is widely used in referring
to the study of general-purpose heuristics.

Effective metaheuristics usually have following characteristics:

• Most metaheuristics have used randomness to deal with impractically large solution
spaces. In many cases, if every element within the solution space can be reached
with nonzero probability, some forms of convergence results can be established.
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• Many metaheuristics have their roots in natural phenomena.Notable examples in-
cludegenetic algorithms(GAs), ant colony optimization, andtabu search, which
were inspired by phenomena in biology; andsimulated annealing, which was in-
spired by the annealing in metallurgy.

(For detailed discussion, see Dréoet al. [2006].)

The methodology used in this part falls in the general area ofmetaheuristics. The
main idea of the approach isdivide and conquer, i.e., decompose the original intractable
problem into smaller, tractable subproblems, and solve these subproblems instead. How-
ever, naive divide and conquer will only work on problems that have separable objective
functions. For problems with a considerable amount of interactions among subproblems,
we have to carefully consider the impact these interactionshave on objective function
values and feasibilities, and devise a scheme that coordinates these subproblems prop-
erly.

In order to effectively coordinate a large number of subproblems, we turn to game
theory, which has its roots in economics. Modern game theorywas first introduced by
von Neumann and Morgenstern [1947] and quickly became a popular tool in explaining
and predicting behavior of groups of rational decision makers (playersin game theory
terminology) when their well-beings are associated with the joint actions of all decision
makers (players). If each subproblem is associated with choices of a player in the game,
and the objective function value is viewed as acommon payofffor every player, the
original optimization problem can then be represented as agame of identical interests.
The notion of a solution to a game is that of a NE, which for a game of identical interests
can be viewed as a coordinate-wise local optimum. Thus, instead of searching for an
optimum for the original problem, after we successfully turn an optimization problem
into a game, we search for the NE.

4.1 Searching for the NE

For games with large numbers of players, trying to locate a NEis a very challenging
task. The most critical issue related to computing a NE, is the exponential growth of the
size of a game in the number of players. In some real-world examples, we may have
tens of thousands of players. Storing payoff values for all strategy profiles is impossi-
ble in these cases, let alone searching for a NE with the payoff matrices. Therefore, the
algorithm we used in searching for a NE in a game should explore the payoff matrix in-
crementally, thus avoiding having to retain the whole payoff matrix (which is impossible
in large games) from the very beginning.

In this thesis, we will use a simple-to-implement iterativealgorithm which is a varia-
tion of Fictitious Play (FP). Convergence results for the FPalgorithm and its variants are
stated in Monderer and Shapley [1996] and Lambertet al. [2005]. We refer interested
readers to Lambertet al. [2005] for a complete treatment. Besides FP, McKelvey and
McLennan’s work on GAMBIT [1996] is an excellent reference for various computa-
tional methods for finding NEs.
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The intuition behind FP lies in the theory of learning in games. In a classical FP
process (see, for example, Brown [1951]), every player assumes that other players are
playing unknown stationary mixed strategies, and tries to learn them iteratively. The esti-
mates of the unknown stationary mixed strategies are represented asbelief distributions,
or beliefs, and are shared among all players. The belief distribution for playeri is a mixed
strategy calculated by finding the relative frequency of allstrategies from the history of
its past plays. During each iteration, each player finds itsbest replyagainst the belief
distribution of other players (i.e., its belief of how they will play). These best replies
are then included in the history of past plays and the beliefsare updated accordingly.
To start the FP process, an arbitrary joint strategy is used.The FP algorithm doesn’t
converge to equilibrium in general. However, for games of identical interests, as in our
case, the sequence of beliefs generated by the FP algorithm are guaranteed to converge
to equilibrium [Monderer and Shapley, 1996].

The best reply operation of the classical FP algorithm outlined above is too compu-
tationally expensive to implement in practice. Lambertet al. [2005] thus suggested a
variant they calledsampled fictitious play(SFP) that is computationally practical. SFP
is very similar to FP except the best reply evaluation in eachiteration is done against
samples randomly drawn from the belief distribution instead of the belief distribution it-
self. A convergence result for SFP with gradually increasing sample sizes is proved in
Lambertet al. [2005]. In practice, however, samples of size one are often used at each
iteration.

The SFP algorithm, with sample size one, is described below:

1. Initialization: An initial joint strategy is chosen arbitrarily. It is then stored in the
history.

2. Sample: A strategy is independently drawn from the history of each player (i.e.,
for each player, each past play is selected with equal probability).

3. Best Reply:For every player, the best reply is computed by assuming thatall other
players play the strategies drawn in step 2.

4. Update: The best replies obtained in step 3 are stored in the history.

5. Stop? Check if the stopping criterion is met; if not, go to step 2, otherwise stop.

The pseudo-code for the SFP algorithm and the sampling subroutine is listed in Fig-
ure 4.1. This pseudo-code is specified for a game withP players. Here,D andB are
P -dimensional vectors whose components contain individualstrategies of the players,
and (·)T denotes the transpose operation.H is a “history” matrix, whereH(k, j) rep-
resents playerj’s best reply in thekth iteration. NotationH(k, :) represents thekth row
of matrix H, while H(:, j) is the column containing the history of past plays of player
j. This representation of the history allows convenient access to relevant information for
sampling in step 2.

Algorithm 4.1 implements the SFP algorithm in a straightforward way. Line 1 gener-
ates an initial solution (joint strategy) by calling function INITIAL SOLUTION, thus pop-
ulating the0th row of history matrixH. Line 4 performs uniform sampling from each
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ALGORITHM 4.1: SFP

1: H(0, :)← INITIAL SOLUTION()
2: k ← 0
3: while STOPCRITERION() is false do
4: D← SAMPLE(H , k)
5: B← BESTREPLY(D)
6: H(k + 1, :)← BT

7: k ← k + 1
8: end while

D = SAMPLE(H , k)

1: for j = 1 to P do
2: u← DISCRETEUNIFORM(0, k − 1)
3: D(j)← H(u, j)
4: end for
5: return D

Figure 4.1: Sampled Fictitious Play (sample size 1).

player’s history independently. Line 5 computes a best reply B to the sampled decision
D. Line 6 appendsB at the end of the history matrixH. Note that except fork = 0,
each rowk of matrixH stores best replies computed in iterationk. The above three lines
are then repeated until STOPCRITERION returnstrue. Since the BESTREPLY subroutine
simply solves a collection ofP one-dimensional optimization problems whose input is
the sampled decisionD, it can be executed in parallel. As we will see in Chapter 5, the
parallelization of the best reply computation is the most important feature that makes SFP
algorithm efficient.

Although this is not explicitly specified in the general pseudo-code, we will keep
track of the “incumbent” solution, i.e., the pure strategy with best performance observed
so far, throughout the algorithm. At termination, the SFP algorithm returns the current
and therefore best incumbent solution.

4.2 Remarks

The SFP-like algorithm was first implemented and used as an optimization scheme
by Garciaet al. [2000], who applied it to a dynamic traffic assignment problem. When
compared to previously established methods, the SFP algorithm was able to obtain solu-
tions of the same quality significantly faster. However, it was Lambertet al. [2005] who
formally introduced SFP and established related convergence results. Based on this work,
Lambert and Wang [2003] further demonstrated the effectiveness of the SFP algorithm
as compared to simulated annealing for a communication protocol design problem.

We are well aware of the fact that in order to best solve specific applications, empirical
tunings, which usually involve domain-specific knowledge,are required. In this thesis,
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however, we are interested in proposing SFP as a general approach, so that it can easily
be implemented and used on a variety of problems.

The next two chapters address two important issues in using SFP as a general op-
timization tool. First, given an unknown black-box type objective function with finite
discrete variables, we are interested in setting up the problem so that SFP can be used as
a standard tool. The following concerns must be addressed inorder to achieve this:

• How can we formulate the problem as a game?

• How should we define each player’s BESTREPLY function?

• How can we take advantage of the parallel nature of the algorithm?

Second, SFP is by construction an algorithm that only works on unconstrained problems.
We are interested in extending it so that it can also be used onconstrained optimization
problems. Chapter 6 presents a case study on approximating the solution to the stochastic
dynamic programming, and it is shown that with proper feasible space transformation
techniques, SFP can also be used in solving some constrainedproblems.
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CHAPTER 5

Optimizing Large Scale Simulations by Parallel
Computing

As discussed in Chapter 4, we are interested in establishingSFP as a general opti-
mization tool. In this chapter, we look at a case study on the coordinated traffic signal
control in a large network. By using this challenging problem as an example, we show
important steps in using SFP. Also, we address a critical issue, i.e., parallel implementa-
tion, in using SFP on real problems.

This chapter is organized as follows. Section 5.1 introduces the problem of coordi-
nated traffic signal control. We state why it is important, why it is hard, and what we can
do about it. Section 5.2 formally describes the coordinatedtraffic signal control prob-
lem, defining terminology and the problem in detail. Section5.3 presents the coordinated
traffic signal control problem in game-theoretic terms, andexplains the details of the al-
gorithm’s implementation. In Section 5.4, the test case andresults of experiments are
discussed.

5.1 Introduction

Since Webster and Cobbe [1958] first published their research on pre-timed isolated
traffic signal control, significant progress in traffic signal control has been made. With
the introduction of advanced computer, control, and communication technologies in traf-
fic networks, signal control systems are now able to receive more network-related in-
formation and respond in a more congestion-adaptive manner. From past research, we
can see that, in general, the more information a signal controller uses, the better perfor-
mance it can achieve. However, the complexity of algorithmsfor designing signal timing
plans correspondingly grows as more information is being utilized. Another factor that
complicates the problem is the number of signalized intersections considered. In the gen-
eral case, with non-periodic signal timing plans allowed, the size of the problem grows
exponentially as the number of considered signals increases. Therefore in practice, the
tradeoff between the accuracy of the algorithm, the amount of traffic-related information
used, and the size of the network remains an issue.
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Based upon amount of information used in the control schemes, we can classify re-
lated research into the following categories:

1. Offline: Pre-timed signal control schemes for both isolated and coordinated sig-
nal control belong to the offline category. Since pre-timed signal timing plans are
computed in an offline manner, they can only use information related to historical
flow statistics and network configuration. Webster’s method[Webster and Cobbe,
1958] and its extensions, SIGSET [Allsop, 1971], and SIGCAP[Allsop, 1976] are
examples of isolated control methods (only a single signalized intersection is con-
sidered). MAXBAND [Little, 1966; Littleet al., 1981] and its extensions, and
TRANSYT [Robertson, 1969] are notable examples of coordinated control meth-
ods (a group of signalized intersections is considered simultaneously).

2. Online: The use of sophisticated surveillance technologies, including inductive
loop detectors and surveillance cameras at signalized intersections, enables traffic
signal controllers to make use of real-time traffic information. This information, in-
cluding, but not limited to, vehicle counts, link volume andlink occupancy, proved
to be very useful in computing real-time signal timing plansfor both isolated and
coordinated signal control. Most modern traffic signal control technologies be-
long to the online category. For the isolated control case, it was Miller [1965]
who first proposed a control strategy based on online traffic information. Other
more recent methods include SCATS [Sims, 1979], PRODYN [Henry et al., 1983;
Henry and Farges, 1989], OPAC [Gartner, 1983; Gartneret al., 2001], UTOPIA
[Mauro and DiTaranto, 1989], SPPORT [Yagar and Han, 1994], COP [Sen and
Head, 1997]. It should be noted that although many of the above control strate-
gies (e.g., OPAC, PRODYN and SCATS) are also used in coordinated control, the
coordinations are mostly done heuristically due to the combinatorial complexity
of the problem. Other notable research that focuses on the coordinated control
problem includes SCOOT [Huntet al., 1981], CRONOS [Boillotet al., 1992], RE-
ALBAND [Dell’Olmo and Mirchandani, 1995], Lin and Wang [2004], and Heung
et al. [2005].

3. Predictive: Based on offline and online information, the next promisingextension
is to come up with predictions of future network congestion,and compute the signal
timing plans in anticipation of predicted future traffic conditions. An example of
such an approach is RHODES [Mirchandani and Head, 2001; Mirchandani and
Wang, 2005]. It uses a combination of current real-time information and planned
timing plans from upstream signals to predict future arrivals.

Among these three categories, the control schemes with offline and online informa-
tion are well-studied and are widely implemented. In comparison, control schemes that
are capable of using predictive information are still mostly experimental and researchers
are just beginning to explore the benefits of using such information.

The method we propose in this chapter does make use of such predictive informa-
tion. We rely on information on time-dependent origin-destination flows, which can be
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used to predict link congestion in the future. We believe that high quality predictive
information will become more and more accessible due to the following two important
technological advances. The first important advance is highquality estimation of dy-
namic origin-destination trip flows [Ashok and Ben-Akiva, 2000, 2002]. The second is
the use of vehicle-based GPS systems and other vehicle tracking technology in vehicle
routing. With such equipment, we can precisely collect the origin-destination informa-
tion for the “smart” vehicles (i.e., vehicles outfitted withsuch equipment). Also, by using
these vehicles as traffic probes, we can get better estimatesof current link congestions.
By combining the above two branches of research, high quality predictive information
required by our method should become available. The first goal of the chapter is thus
to introduce an algorithm that is capable of incorporating this predictive information in
computing adaptive traffic signal timing plans.

Another goal of this chapter is to address the difficulty of finding solutions to the
combinatorial problem that arises in general coordinated traffic signal control. The size
of the set of solutions that need to be considered grows exponentially as the number
of intersections and/or the length of the time horizon considered increases. Moreover,
functions typically used to measure performance of the network, such as, for example,
average trip time experienced by the drivers, have to be evaluated via computationally
intensive traffic simulators. These functions also lack structural properties that traditional
optimization algorithms rely upon, calling for novel methods for searching the solution
space. Our algorithm allows for parallel execution, which makes real-time signal control
possible even in a large network. The applicability of our approach (calledCoSIGN,
for “Coordinated SIGNals”) is demonstrated by a test case study based on the real traffic
network of Troy, Michigan.

5.2 Traffic Signal Control Problem Formulation

We consider the problem of finding an optimal coordinated traffic signal plan for a
group of signalized intersections over a given time horizon. A problem instance is defined
by specifying the topology of the traffic network, the time horizon, as well as the time-
dependent origin-destination flows over this time horizon.In particular, for every origin-
destination pair in the network, the timing of vehicles’ departures from the origin for the
destination and the route it takes are presumed to be known. The goal is to minimize
the average travel time experienced by all drivers in the network during the given time
horizon (we use the terms “driver” and “vehicle” interchangeably).

We formulate this coordinated traffic signal control problem as a discrete optimization
problem, where the planning horizon is divided intoN time periods of equal length ofδ
seconds, and the decision variables are thesignal phases1 prevailing during each of the
N time periods, at each of theI signalized intersections. The following notation will be
used in describing the coordinated traffic signal control problem:

1A signal phase is a collection of traffic movements that receive right-of-way simultaneously. Therefore,
all movements within a phase must be non-conflicting.
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• I = {1, 2, . . . , I}: set of signalized intersections;

• N = {1, 2, . . . , N}: set of time periods (each time period isδ seconds long);

• Si = {1, 2, ..., Si}: set of permissible signal phases for intersectioni, i ∈ I ;

• si,n ∈ Si: a decision variable representing the signal phase at intersectioni during
time periodn.

The problem can be formally written as:

min AVERAGETRAVELTIME ({si,n, i ∈ I , n ∈ N})
s.t.

si,n ∈ Si, ∀i ∈ I , ∀n ∈ N
(5.1)

where the mapping from the vector of decision variables,{si,n}, to the objective value is
represented by the function AVERAGETRAVELTIME(·), which reflects the performance
measure we discussed above. The dependence of this functionon the decisions made in
the problem, i.e., the signal timing plans over the planninghorizon, is inherently complex
and possesses neither analytical representation nor knownstructural properties (such as
monotonicity or subadditivity). In effect, we are faced with a problem of optimizing a
“black-box” function. In particular, in our research, all function evaluations are provided
by a traffic simulation program, as described in Section 5.3.2.

One immediate concern resulting from this formulation is the exponential explosion
of possible joint decisions as N and I get larger. In the worstcase, all joint decisions,
with number bounded by(maxi{Si})N ·I , have to be enumerated and evaluated in order
to find an optimal solution to assure global optimality. For apractical size problem, this
is impossible. Therefore, we take the approach of searchingfor a high-quality locally
optimal solution instead. Still, considering the complexity and scale of the problem, it is
not obvious how even this can be achieved within reasonable time.

5.3 CoSIGN: SFP Algorithm for the Traffic Signal Con-
trol Problem

As mentioned above, traffic signal control problems are usually solved by either re-
stricting the space of solutions by searching for parameters of predetermined cyclic pat-
terns, or by limiting the number of signals considerably. Instead, our approach will be
to search for solutions to the full-scale coordinated signal planning problem by using the
SFP algorithm.

To solve a problem with the SFP algorithm, we must first formulate it as a game.
In the following sections, we will describe how to constructa game-theoretic model for
the traffic signal optimization problem. Based on this formulation, we can then specify
the performance measure used to evaluate signal timing plans and describe the best reply
subroutine using this performance measure.
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5.3.1 Formulating Coordinated Traffic Signal Control Problem as a
Game

With the same notation as defined in Section 5.2, we can formulate the problem as a
game:

• Player: each tuple(i, n), i ∈ I , n ∈ N, is a player. LetP be the set of all players,
andP = I ·N , be the number of players.

• Strategy Space:for each player(i, n) ∈ P, its strategy space is the setSi. Player
(i, n)’s decision is denoted byD(i, n).

• Payoff function: by collecting decisionsD(i, n) from all players, a signal timing
plan for the planning horizon is formed. By sending this planto the traffic simu-
lator, we can find the average travel time experienced by all drivers, which is the
payoff function value for all players.

5.3.2 Simulation by INTEGRATION-UM

Accurate evaluation of the average travel time can be accomplished by invoking a
computer traffic simulator. In our experiment, the simulation is done by INTEGRATION-
UM, developed by Van Aerdeet al. [1989] and modified by researchers at the Intelligent
Transportation Systems Research Center of Excellence at the University of Michigan.
INTEGRATION-UM is an event-based, mesoscopic deterministic traffic simulator. In
order to perform a simulation, we need to provide INTEGRATION-UM with following
inputs:

• Network topology definitions: the transportation network is modeled as a directed
graph in INTEGRATION-UM. To fully specify the network topology, we first de-
fine intersections and connection points as the nodes in the graph. There are two
types of nodes in INTEGRATION-UM: zone centroids, which canbe used as ori-
gins and destinations for the vehicle trips, and normal nodes, which can be used as
intersections or connecting points. The roads are then defined as directed links con-
necting these nodes. Important physical properties of eachlink, including length,
capacity, free-flow travelling speed2, and the signal timing plan and the phase con-
trolling this link (if any), must also be provided.

• Traffic signal settings: signal timing plans in the original version of
INTEGRATION-UM were assumed to be cyclic. Cyclic plans werespecified by
parameters that define cyclic patterns, i.e., cycle length,green split, offset, and lost
(yellow) time. We modified INTEGRATION-UM in order to take players’ joint
strategy as input. Note that with a short enough time periodδ, the player model can
emulate any cyclic pattern. Unlike cyclic plans, the signaltiming plans specified

2Free-flow travelling speed of certain link is the speed driver experiences when he/she is the only user
of that link.
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by players’ joint decisions incur lost time at intersectioni only when players(i, n)
and(i, n + 1) in two consecutive periodsn andn + 1 have different decisions.

• Traffic flows: INTEGRATION-UM assumes that the network is empty at the start
of the simulation and all the traffic entering the network is generated by multiple
“flows.” Each flow, implicitly assumed to consist only homogeneous motorized
vehicles, is defined by specifying origin, destination, flowrate (in number of vehi-
cles per hour), and flow starting and ending times. As mentioned in Section 5.1,
this information is usually not directly available, therefore we must combine data
from several sources, including survey, real time adjustments, and predictions, in
order to come up with reasonable estimates. This is where accurate predictive in-
formation can really help us. With better predictive information, the simulation
will better describe real traffic congestion, and this implies that CoSIGN will be
optimizing a more realistic traffic simulation. As a result,for the signal timing plan
generated by CoSIGN, the gap between its performance in the simulation and in
the real traffic network should also become smaller.

A detailed description of specifications of INTEGRATION-UMcan be found in Wunder-
lich’s PhD dissertation [Wunderlich, 1994].

We selected INTEGRATION-UM as our traffic simulator purely on the basis of con-
venience of implementation, since its source code was readily available to us. We would
like to emphasize that since our system architecture is flexible with regard to the type of
simulator used, any traffic simulator could have been used here. The only requirement is
that it must be able to accept the signal timing plan generated by our algorithm as input,
and output necessary information to our solver, as described below.

5.3.3 SFP with Simulation-Based Best Reply Computation

A crucial step in implementing SFP is the computation of bestreplies in line 5 of
Algorithm 4.1. Since for the coordinated signal control problem the objective function
can only be evaluated through the execution of the traffic simulator, the only way to accu-
rately compute each player’s best reply is by pure enumeration of all player’s strategies.
In a problem withI intersections andN time periods, best reply computations for all
players would generally require(N

∑I
i=1 Si) simulations.

In practice the number of simulations can be decreased somewhat by observing the
following facts:

1. In line 4 of Algorithm 4.1, a joint strategyD is sampled. One can evaluate this
strategy (using the simulator) and pass the resulting objective function value as
a parameter to the best reply function. Recall that, for eachplayer, best reply is
obtained by comparing the objective function values of the sampled joint strategy
and the joint strategies obtained by substituting this player’s strategy with other
elements of its strategy set. Since the value of the former isprovided to the best
reply subroutine,(N · I) simulations can be saved.
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2. Given a sampled joint strategyD, there may exist some intersections/time periods
when there is only light traffic waiting to pass through. Since the performances
of all strategies of the corresponding players are likely tobe very close, best reply
computations (and hence calls to the simulator) can be skipped for those players.
We can define a thresholdα, and calculate a best reply for a player(i, n) by in-
voking the simulator only if its combined traffic volume3 is greater thanα. (In our
experiments, we usedα = 0, skipping best reply computations only when no traffic
was traveling through the intersection in a time period.) When the traffic volume is
less than or equal toα, the best reply of this player can be essentially selected ar-
bitrarily. To increase the exploration of the joint strategy space, we drew a random
strategy uniformly from the player’s strategy set in this case.

To take advantage of the second observation, in addition to the objective function
value (i.e., average travel time), we need information on the traffic volume at each in-
tersection during each time period, obtained from time-dependent traffic statistics for the
sampled strategy. Since this information only needs to be obtained in the beginning of
each iteration, we distinguish between executing INTEGRATION-UM in two different
modes: mode MAX, where both average travel time and the time-dependent traffic sta-
tistics are outputted, and mode MIN, where only average travel time is outputted. (The
latter mode is much less time consuming than the former.)

SFP algorithm for the coordinated signal control problem with simulation-based best
reply computation scheme described as above will be calledCoSIGN and used through-
out the chapter. The stopping criterion used inCoSIGN is the number of SFP iterations.

The pseudo-code for the simulation-based best reply function is listed in Algorithm
5.1. Below is the list of functions used in Algorithm 5.1 (hereD denotes a joint strategy):

• INTEGRATION-UMMIN (D): the function runs the simulation and returns the ob-
jective function value.

• INTEGRATION-UMMAX (D): the function runs the simulation and returns the ob-
jective function value and time-dependent traffic statistics. The objective function
value is stored inv, while the time-dependent traffic statistics data are stored in F,
a matrix whereF(i, n) represents traffic volume at intersectioni during time period
n.

• RANDOM(Si): the function uniformly picks an element fromSi and returns it.

The pseudo-code in Algorithm 5.1 implements the ideas discussed earlier. A common
evaluation of the simulator in MAX mode is performed in line 1. For each player, if the
traffic volume is below the thresholdα (as checked in line 4), a phase of the correspond-
ing signal is randomly selected in line 17. Otherwise, the algorithm loops through and
evaluates all phases of the signal (except the phase used inD, which is already evaluated),
starting in line 8.

3Combined traffic volume for player(i, n) is defined as the number of vehicles that would drive past
intersectioni, during time periodn, suppose they are given right of way.
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Algorithm 5.1:B=BESTREPLY(D)

1: (v, F)← INTEGRATION-UMMAX (D)
2: for all i ∈ I do
3: for all n ∈ N do
4: if F(i, n) ≥ α then
5: vmin← v
6: B(i, n)← D(i, n)
7: D′ ← D
8: for all s ∈ Si, s 6= D(i, n) do
9: D′(i, n)← s

10: vs ← INTEGRATION-UMMIN (D′)
11: if vs < vmin then
12: vmin← vs

13: B(i, n)← s
14: end if
15: end for
16: else
17: B(i, n)←RANDOM(Si)
18: end if
19: end for
20: end for
21: return B

Figure 5.1: Simulation-based best reply function.
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Notice that whenever the simulator is executed in either MINor MAX modes, we will
be able to read the performance measures and therefore update the incumbent pure strat-
egy. This best pure strategy will be delivered as the solution at the end of the algorithm
execution, as described in Section 4.1.

5.4 Case Study: Troy, Michigan, Network

In order to test performance of the CoSIGN algorithm, we useda realistic traffic
network model built by Wunderlich [Wunderlichet al., 2000; Wunderlich and Smith.,
1992; Wunderlich, 1994]. This case study model has been constructed based on the real
traffic network of Troy, Michigan, and, to ensure fidelity, carefully calibrated against
empirical measurements. To maintain this fidelity, we did not modify the model in any
way except to insert the signal timing plans we generated. A map snapshot of the Troy
network is shown in Figure 5.2. The corresponding model of the network topology is
shown in Figure 5.3.

Figure 5.2: The snapshot of Troy’s area map.

Here are the parameters used in our experiments:

• Length of the time period:δ = 10 seconds

• Number of time periods:N = 720

• Number of signalized intersections:I = 75

• Number of players:P = N · I = 54,000
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Figure 5.3: The Troy network topology model, composed of 529links, 200 nodes and 72
zone centroids that can serve as origins or destinations.

• Stopping criterion: 20 iterations of CoSIGN are executed

The original cyclic pattern of traffic signals embedded in the model was used as the
initial solution. We assumed that all vehicles will follow fastest free-flow paths4 from
their origins to destinations.

5.4.1 Competing Timing Plans and Algorithms

The goals of this section are twofold: to demonstrate the potential benefits of coordi-
nated traffic signal control using predictive traffic information (as discussed in the Intro-
duction), as well as evaluate the effectiveness of our algorithmic approach, the CoSIGN
algorithm, for this task. Towards these goals, we compared CoSIGN to the following
alternatives:

• Static: fixed cyclic signal timing plans were supplied by the city ofTroy and em-
bedded in the original model. When implemented, these signal timing plans were
defined by cycle time, offsets, and phase splits. Since real-time signal plan opti-

4The fastest free-flow paths are computed with the assumptionthat free-flow speeds prevail on all links
over the planning horizon.
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Algorithm 5.4: CD()

1: D0 ← INITIAL SOLUTION()
2: k ← 0, p← 1, u← 1
3: while u < P do
4: ŝp ← BESTREPLYp(Dk)
5: Dk+1 ← (ŝp, D

k
−p)

6: if D k+1 = Dk then
7: u = u + 1
8: else
9: u = 1

10: end if
11: k ← k + 1, p← (p mod P ) + 1
12: end while

Figure 5.4: Coordinate Descent (CD) algorithm.

mization was not available in Troy at the time the model was built, these plans are
kept constant throughout the planning horizon.

• Automatic Signal Re-timing (ASR): although real-time signal timing plan opti-
mization was not available in Troy when the model was constructed, the
INTEGRATION-UM simulator provides an automatic cycle and phase split opti-
mization tool, which can be used to evaluate the potential impact of such schemes.
When the tool is turned on, cycle lengths and green splits at all signals are recal-
culated at user-specified intervals, using current traffic volume information. For
detailed description of this algorithm, refer to Appendix A.

Since static and ASR timing plans control each signal in isolation, the benefits of
coordinated signal control can be demonstrated by comparing CoSIGN to static and ASR
control schemes. This comparison is conducted in Section 5.4.2.

• Coordinate Descent (CD): a straightforward way to solve a discrete optimization
problem of the form (5.1) is to start with some initial solution, loop through all
variables (i.e., coordinates) one by one, and solve each single-variable problem
while keeping the values of all other variables fixed. The result from the single-
coordinate optimization is used to update the current solution. The process stops
when a solution cannot be further improved after looping through all variables. In
our setting, CD can be formally implemented as follows (hereDk denotes the joint
strategy at iterationk, (sp, Dk

−p) denotes the same joint strategy with the strategy of
playerp replaced bysp, and the subroutine BESTREPLYp evaluates the best reply
strategy for playerp only):

The stopping criterion in line 3 of CD is based on the number ofconsecutive non-
improving iterations,u. If u = P (recall thatP is the number of variables in this
problem), the objective function value cannot be improved after looping through
all P variables, and thus we stop.
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The CD algorithm by construction considers coordinated signal timing plans, thus we
also expect it to enjoy the benefits of coordination, as CoSIGN does. However, CD is a
“serial” algorithm in that it considers the variables sequentially, with the output of one
single-variable optimization serving as an input into the next one. In a real traffic network
(like the Troy network), where the number of variables is large and the time required to
invoke a single simulation is non-negligible, the time required to obtain any significant
improvement through running CD algorithm may be prohibitively long. To demonstrate
the benefits of parallelization, we will explore the possibility of parallel execution of
CoSIGN and compare it to CD in subsections 5.4.3 and 5.4.4.

5.4.2 Benefits of Signal Coordination and Predictive Information

Results of experiments comparing CoSIGN to the static and ASR signal timing plans
can be seen in Table 5.1. The performance measure is the average travel time experienced
by all drivers in the traffic network, evaluated by INTEGRATION-UM. For thenormal-
flow casetaken from Wunderlich’s model, around 26,000 vehicles wereallowed to flow
into the network from the beginning of the simulation to the24th minute mark. This
traffic volume, as well as the flow patters used in our experiments, are consistent with
the traffic patterns observed in Troy at the time the model wasconstructed. After the
inflow was stopped, the simulator was allowed to run an additional 96 minutes in order
to clear all traffic. To evaluate performance under different traffic conditions, we created
two similar scenarios,light-flow caseandheavy-flow case, where the same traffic flow
pattern and time horizon were used, but the flow rate was decreased (increased) by50%,
so that approximately 13,000 (39,000) vehicles were allowed to flow into the network.

Table 5.1: Performance of three competing algorithmsa.

Avg. travel time (min.)
Light flow Normal flow Heavy flow

Static 10.1 (+13%) 19.4 (+29%)c 43.8 (+58%)
Best ASR 9.4 (+5%) 17.2 (+14%) 38.2 (+38%)

Best 8.8 14.9 25.9
CoSIGNb Mean 8.9 15.1 27.6

Worst 9.0 15.3 29.8
a Average travel times are used for performance comparison pur-

pose.
b Fifteen independent CoSIGN runs are executed in all flow, sce-

narios, and best, mean and worst are obtained accordingly.
c The number in each cell is corresponding average travel time

(in minutes) for that case. The percentages listed in row “Sta-
tic” and “Best ASR” are margins computed with “CoSIGN —
Mean” as base. For example, +29% in Static-Normal flow cell
means that the average travel time of static timing plan, under
normal flow, is 29% more than that of CoSIGN on average.
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Note that as depicted in line 4 of Algorithm 4.1, a random sample is drawn from
the history during the beginning of each iteration. This randomness makes CoSIGN a
stochastic algorithm. Therefore, to assess performance ofCoSIGN, we report summary
statistics (mean, best and worst values) of solutions foundby 15 independent runs of
CoSIGN on each problem instance. Although there is some variability in quality of
obtained solutions, stemming from the stochastic nature ofthe algorithm, CoSIGN finds
a signal plan that significantly improves on the starting solution in each instance.

Table 5.1 compares average travel times of signal plans found by multiple CoSIGN
executions to that of a static signal plan and the one found byASR. From Table 5.1
we can see that the plans found by CoSIGN (both on average and even in the worst
case) perform better than the other two, under all flow conditions, and the margin of
advantage increases as flow gets heavier. Since the static signal timing plan is not adaptive
to traffic conditions, this result is to be expected. As for the ASR algorithm, although
it is responsive to the real-time traffic condition, its underlying assumption is that the
network is undersaturated, and this condition is more likely to be violated in the heavy-
flow case than in the light-flow and normal-flow case. This leads to relative deterioration
of performance of the ASR approach in the heavy-flow case.
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Figure 5.5: The evolution of best values as a function of iteration count for the normal-
flow case.

It should also be noted that in the ASR implementation withinINTEGRATION-UM,
the interval between signal re-timings is a user-specified parameter. Our experiments
with various settings of this parameter demonstrated its critical importance to the perfor-
mance of ASR. Results reported in Table 5.1 reflect the performance of ASR with the
re-timing interval that was empirically found to be the bestfor each experiment. (These
“best” intervals had different lengths under different traffic conditions, and we found no
discernible pattern of dependence of the method’s performance on the interval length;
e.g., more frequent re-timings did not necessarily lead to improvements.) In other words,
the reported margin of CoSIGN over ASR is a conservative bound, and in practice, with
re-timing intervals determined mostly ad hoc, this margin will be much larger.

In Figure 5.5, we plot the evolutions of mean best value (average travel time of current
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Figure 5.6: The evolution of best values as a function of iteration count for the light-flow
case.

0 2 4 6 8 10 12 14 16 18 20
26

28

30

32

34

36

38

40

42

44

Iterations

A
ve

ra
ge

 tr
av

el
 ti

m
e 

(m
in

.)

Figure 5.7: The evolution of best values as a function of iteration count for the heavy-flow
case.

incumbent solution) versus iteration number for the normal-flow case. Similar evolutions
are drawn for the light-flow and heavy-flow cases in Figure 5.6and Figure 5.7 respec-
tively. Figures 5.5, 5.6 and 5.7 motivate our choice of terminating CoSIGN after 20
iterations: most of the improvements were achieved within the first 10 iterations, and
improvements around20th iteration were small.

Another interesting statistic we observe in these computational experiments is the
average travel time experienced by drivers leaving their origins at different times. For
all three flow scenarios, we consider 24 groups of vehicles, grouped according to their
departure times, where theith group contains vehicles departing within theith minute.
For each such group, the average travel time of all vehicles in the group is then plotted
as a data point. In Figures 5.8, 5.9, and 5.10, average traveltimes of each group for each
control scheme are plotted against all possible departure minutes (1, 2, . . . , 24). From
these figures we can conclude that as flow grows heavier, CoSIGN performs relatively

40



better than the two alternatives.
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Figure 5.8: Average travel time as a function of vehicles’ departing time, for the light-
flow case.
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Figure 5.9: Average travel time as a function of vehicles’ departing time, for the normal-
flow case.

5.4.3 Parallelized Implementation of CoSIGN

We have demonstrated the benefits of a coordinated signal control algorithm that takes
into account predictive traffic information in the previoussubsection. However, another
important consideration is the time required to execute such an algorithm. In a straightfor-
ward serial implementation on a Pentium-4 2.8GHz PC with 1GBRAM, running RedHat
Linux, 20 iterations of CoSIGN took 169.04 hours for the normal-flow case, and 397.6
hours for the heavy-flow case.

Since CoSIGN is expected to be responsive to current traffic conditions and forecasts,
its execution time should be short enough to fit into the desired update interval. One way
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Figure 5.10: Average travel time as a function of vehicles’ departing time, for the heavy-
flow case.

to significantly reduce the “wall-clock” running time without sacrificing the precision or
scope of the solution is through parallelization. In this subsection we will describe how
to parallelize CoSIGN and discuss the impact that degree of parallelization has on the
running time of the algorithm.

As mentioned earlier, computation between line 2 and line 17in Algorithm 5.1 can be
parallelized. WithK identical CPUs available, we can divide the best reply evaluations
for all players intoK tasks, and assign each task to a CPU. Each task will take the
sampled joint strategy,D, its associated objective value,v, and the set of players,Pj ,
as input parameters. The output of each task will be the best replies,Bj, for players
in Pj. Note that since

⋃K
j=1 Pj = P, we have

⋃K
j=1 Bj = B. Regardless of the degree

of parallelization, as long as samples drawn in line 4 of Algorithm 4.1 and in line 17
of Algorithm 5.1 remain the same, CoSIGN will evaluate the same set of solutions and
return the same output.

In order to asses the impact of parallelization without resorting to repeatedly re-
running CoSIGN on clusters of CPUs of various sizes, we instead analytically relate
the running time of CoSIGN to the degree of parallelization,and rely on a single run of
CoSIGN to make performances estimates.

We will use the following notation:

SMAX : time required to execute INTEGRATION-UMMAX (·)
SMIN : time required to execute INTEGRATION-UMMIN (·)
P : number of players
NCoSIGN: number of CoSIGN iterations exe-

cuted (NCoSIGN = 20 in our imple-
mentation)

K: number of available CPUs

In our calculations we neglect time spent on communicationsbetween CPUs and sam-
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plings in the implementation of CoSIGN since the time spent on simulations dominates
total execution time. Also, we assume that at every iteration,K tasks for best reply eval-
uation are created in a balanced manner, i.e., they require approximately equal time for
execution.

In BESTREPLY function, one call to INTEGRATION-UMMAX (·) and at most
(N

∑I
i=1(Si− 1)) calls to INTEGRATION-UMMIN (·) will be made. LetPT be the num-

ber of calls made to INTEGRATION-UMMIN (·) in one iteration. The wall-clock running
time of BESTREPLY function withK CPUs utilized as described above is bounded above
by

TBR ≤ SMAX +

⌈

PT

K

⌉

SMIN (5.2)

(this is an upper bound since, as discussed in section 5.3.3,best reply computations are
skipped for some of the players). Therefore, the total wall-clock running time ofNCoSIGN

iterations of CoSIGN will be

T (K) = NCoSIGN · TBR

≤ NCoSIGN

(

SMAX +

⌈

PT

K

⌉

SMIN

)

. (5.3)

To obtain a tighter bound, letPs be the average number of simulations actually used per
iteration, after we consider the savings described in subsection 5.3.3; we can then replace
(5.3) with

T (K) = NCoSIGN

(

SMAX +

⌈

Ps

K

⌉

SMIN

)

≈ NCoSIGN

⌈

Ps

K

⌉

SMIN . (5.4)

In the Troy test case with normal traffic flows, we observed during a typical run of
CoSIGN (withNCoSIGN = 20) SMIN = 1.3 seconds andPs = 21,582 (note that this is
about a60% reduction in the number of simulations). Hence (5.4) becomes:

T (K) ≤ 20

⌈

21,582
K

⌉

1.3 seconds= 20

⌈

21,582
K

⌉

1.3

60
minutes. (5.5)

For instance, forK = 134, 70 minutes of wall-clock computation time will be needed to
execute CoSIGN. ForK = 256, the required time is 37 minutes, and forK = 1024 —
just 9 minutes. We chose these illustrative values ofK since such computational facilities
are readily available at educational institutions such as the University of Michigan and
University of Texas. To give the reader a broader sense of theimpact that different degrees
of parallelization have on the wall-clock time required by CoSIGN, we plotted (5.5) in
Figure 5.11.

To demonstrate that parallelization is indeed feasible, weimplemented a parallel ver-
sion of CoSIGN on cluster systems managed by the Center for Advanced Computing5 at
the University of Michigan. The specifications of the cluster systems are as follows:

5http://cac.engin.umich.edu

43



0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

10

20

30

40

50

60

70

80

90

100

K (number of CPUs)

T
 (

m
in

ut
es

)

Figure 5.11: Running time of CoSIGN versus degree of parallelizationK.

• morpheus: the 208 processor Athlon cluster is composed of 17nodes of dual
Athlon 1600MP CPUs, 29 nodes of dual Athlon 2400MP CPUs, and 58 nodes
of dual Athlon 2600MP CPUs.

• nyx: the 450 processor Opteron cluster is composed of 225 nodes of dual Opterons,
ranging from Opteron 240s (@ 1400 MHz) to Opteron 244s (@ 1800MHz).

In our experiments, the typical number of processors used was either 8, 16, or 32, due
to the job scheduling policy.

Note that these systems are equipped with CPUs slower than the one we have run
our serial experiment on, therefore the curve in Figure 5.11is not directly applicable.
However, a corresponding plot for running time versus degree of parallelization can be
easily reconstructed by measuringSMIN on each system.

One of the main assumptions in our derivation is that the timespent on communica-
tion can be neglected. We verified this assumption by lookingat the timing analysis from
our parallel experiments. We observed that in all cases, thepercentage of time spent on
communication is less than 0.005%. Therefore, at least in our current experiments, the
communication time is indeed negligible.

5.4.4 Relative Performance of Parallelized CoSIGN vs. Coordinate
Descent

As noted in prior sections, CoSIGN is a heuristic that searches for an optimal solution
to the coordinated traffic signal control problem. Althoughwe have empirically shown
the algorithm’s benefits based on a realistic test case, the solution found in 20 iterations is
not guaranteed to be an optimal solution to the problem, evenin the local sense. In fact,
while the average vehicle travel time in the normal flow case was 15.60 minutes under
the signal plan found by CoSIGN, the Coordinate Descent (CD)algorithm described in
Section 5.4.1, given sufficient time, found a plan with average time of 13.13 minutes. It
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should be noted, however, that it took CD 362,500 iterationsover several days of running
time to identify this solution.

A meaningful way to compare practical performance of any twoheuristic algorithms,
such as CoSIGN and CD, on a problem is to compare the objectivevalues of solutions
they find given the same amount of wall-clock time. As we demonstrate in this section,
as the number of processors made available to CoSIGN increases, its wall-clock running
time decreases, and the quality of solutions found by CD in the same time deteriorates
dramatically.

As in the previous subsection, we do not resort to multiple algorithm runs, but rather
use analytical estimates of running times of CD and CoSIGN toperform the comparison.

Recall that the CD algorithm is initialized with some initial solution, and in each step
afterwards, uses a simulation to evaluate the current player’s alternative decision. In each
of these steps, the solution will be modified if the current player’s alternative decision
improves the solution. As this process suggests, the CD algorithm cannot be parallelized
and must be executed serially. Therefore, the wall-clock time required to executeNCD

iterations of CD is
(NCD + 1)SMIN . (5.6)

(We did not invoke the threshold test to bypass potentially unnecessary simulations in CD
since that would require running INTEGRATION-UMMAX at every iteration. SinceSMAX

exceedsSMIN by 50% to 150%, depending on the number of vehicles in the network, the
added computational effort would outweigh potential savings.)

Let NCD(K) denote the number of iterations CD would be able to perform ifit were
allowed the same amount of wall-clock time as it takes to executeNCoSIGN iterations of
the parallelized CoSIGN algorithm running on a cluster ofK processors, i.e.,T (K).
Setting(NCD(K) + 1)SMIN = T (K) and using the formulas above, we obtain:

NCD(K) ≤
NCoSIGN(SMAX + ⌈PT /K⌉ · SMIN )

SMIN
− 1

= NCoSIGN

(

SMAX

SMIN
+

⌈

PT

K

⌉)

− 1. (5.7)

(Recall thatPT = N
∑I

i=1(Si − 1).) Once again, ifPs is the actual average number of
simulations used per iteration by CoSIGN, we can obtain a tighter bound:

NCD(K) ≤ NCoSIGN

(

SMAX

SMIN
+

⌈

Ps

K

⌉)

− 1. (5.8)

In the Troy test case with normal traffic flows,NCoSIGN = 20, andPs = 21,582, and
the numeric form of (5.8) becomes:

NCD(K) ≤ 20

(

SMAX

SMIN
+

⌈

21,582
K

⌉)

− 1 ≈ 20

⌈

21,582
K

⌉

. (5.9)

The number of iterations CD will be able to complete in the same amount of wall-
clock time as CoSIGN is inversely proportional to the numberof processors available
to CoSIGN.
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As mentioned in the beginning of the section, we did perform one multi-day run of CD
for the normal flow scenario in the Troy network. We can now compare the performance
of the algorithms as follows: for a particular value ofK, we estimateNCD(K) based
on (5.9) and consult the output of the CD run to obtain the average travel time for the
signal plan found by CD inNCD(K) iterations. The resulting comparison is presented in
Figure 5.12, where we plot the average travel time of solutions found by CD inNCD(K)
iterations versusK for the normal-flow case. A similar graph for the heavy-flow case
is plotted in Figure 5.13. (These graphs may appear a bit counterintuitive at first, as the
increase in the number of CPUs results in worse objective function values found. To
interpret these graphs, recall that addition of CPUs decreases the amount of wall-clock
time allotted to CD, allowing for fewer iterations and less progress.) For comparison, the
average travel times of 15.08 minutes (for the normal flow case) and 27.62 minutes (for
the heavy flow case) obtained by CoSIGN are also plotted on thesame graph. (Recall that
these are the mean performance measures of solutions found by several runs of CoSIGN
on each problem instance.)
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Figure 5.12: Average travel time of solution found by CD whengiven the same wall-clock
time as the parallel execution of CoSIGN withK processors, vs. K.: for the normal-flow
case.

As Figure 5.12 indicates, CD underperforms CoSIGN in this comparison if the latter
is allowed 26 CPUs or more. Moreover, if CPUs number in the hundreds, CD makes
almost no progress from the initial solution in the time it takes CoSIGN to complete its
run. Similar result can be observed in Figure 5.13, where CD underperforms CoSIGN in
this comparison if the latter is allowed 16 CPUs or more.

Even though in the long (very long!) run CD found a better solution than CoSIGN,
since wall-clock times available in practice are limited, the parallelized CoSIGN algo-
rithm will always be superior to CD in practice. Since CD is aninherently sequential al-
gorithm, multiple available CPUs can be utilized by runningCD for the specified number
of iterations starting at different initial solutions on each CPU and reporting the best so-
lution found. However, based on our empirical experience, CD makes very slow progress
in each iteration. Therefore, it will not in fact achieve significant improvement over the
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Figure 5.13: Average travel time of solution found by CD whengiven the same wall-clock
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starting points it is provided.
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CHAPTER 6

Approximate Large-Scale Dynamic Programming: A
Special Case

Chapter 5 suggests a general parallel implementation of SFPalgorithm for solving un-
constrained discrete optimization problems. However, to solve constrained optimization
problems, we have to modify the original SFP procedure. The purpose of this chapter, is
to provide an example on how this can be achieved. The benefit of being able to quickly
solve large problems later becomes clear when we use the solver repeatedly to solve in-
stances generated by modifying problem data in a controlledmanner. It is shown that we
can obtain managerial insights by using this numeric approach.

This chapter is organized as follows. Section 6.1 describesthe background and the
importance of the joint optimization problem in productionsystems. In Section 6.2, we
formulate the joint optimization problem as a Markov decision process. In Section 6.3,
we formally state how the game-theoretic approach can be applied to solve the original
Markov decision process. In Section 6.4, we discuss the results of numerical experiments
and how we can use our approach to develop managerial guidelines. Finally, Section 6.5
concludes the chapter.

6.1 Introduction

Automotive original equipment manufacturers (OEMs) are faced with the challenge
of significantly increasing efficiency to offset net vehicleprice reductions and increasing
benefit costs. At the same time, ever increasing consumer expectations of responsive-
ness and customization are driving a need for operational flexibility. Management must
carefully weight these competing goals when making decisions on capital investments,
pricing, and operational policies.

In this chapter, we focus on addressing the problem of optimally investing capital in
new production facilities and equipment. Thus, the first keydecision to be made is: 1)
What equipment to install?This involves determining the number, capacity, and flexibil-
ity of production lines. These decisions are governed by constraints on available capital
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and must factor in forecasts of future demand patterns. Although demand for a vehicle
model depends on dynamic exogenous factors such as economicconditions and consumer
trends, it can be partially controlled by adjusting the selling price. This introduces the
second key decision: 2)What should be the selling price of each vehicle model?These
prices, combined with the dynamic exogenous economic factors, yield demands for each
vehicle model. These demands in turn drive production requirements. Thus the third key
decision is: 3)What are the productions targets?Note that even if production meets or
exceeds demand, it may not always be optimal to fulfill all demands. For example, it
may be preferable to stockpile inventory of some models to reap higher selling prices due
to seasonality effects. Thus the fourth key decision is 4)How many vehicles should we
sell? Note: Although OEMs generally do not hold inventory and bookrevenue as soon
as vehicles leave the plant, they do incur some dealer inventory costs through discounted
inventory financing. Consequently, the dealer network could be conceptually viewed as
an extension of an OEM.

The optimization problem described above is hierarchical in nature, involving deci-
sions at strategic, tactical, and operational levels by different decision-makers. Higher-
level decisions constrain and set the context for lower-level, while the potential results of
lower-level decisions in turn impact higher-level decisions. Due to their different levels in
the decision hierarchy, each decision may have its own horizon, ranging from very long
for strategic decisions such as capital investment to quiteshort for operational decisions
such as production levels. The joint optimization problem is extremely complicated, and
it is not clear how to make optimal decisions.

To understand the problem abstractly, we will first establish a mathematical model
that approximates the joint optimization problem. It should be noted that when formu-
lating the problem, a high level of fidelity is not our top priority as this would require
consideration of an inordinate number of uncertainties as well as numerous exogenous,
qualitative, and strategic factors. Even if such an optimization problem were tractable,
the required data - much of it stochastic in nature – would be exceedingly difficult to col-
lect. Instead, we propose simpler models for which data can actually be obtained, with
the goal of generating strategic and operational insights that may be effectively used by
decision-makers to improve performance. In order to obtainsuch insights, it will be desir-
able to repeatedly solve the problem with controlled problem data, so that we can observe
the correlations among important system features. To meet this end, our algorithm must
be efficient enough in solving single problem instance, so that within reasonable amount
of time, we can collect necessary amount of data for testing various hypotheses about the
system.

As we will see in the later sections, even the simplified modelwe proposed is very
difficult to be solved exactly. Thus the first issue we must address is how to efficiently
solve the problem, either exactly or approximately. And if the problem is solved approx-
imately, how far is it from the real global optimum.

In practice, as more and more desired features being added tothe model, it will even-
tually become impossible to describe the model analytically and a simulator has to be
used. Therefore the second issue we must address is to make sure that the algorithm we
choose is capable of optimizing a black-box simulator besides a nicely formed function.
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There has been a recent boom in the revenue management-inventory control literature.
Research in the past has considered different forms of revenue management. For a recent
review on this topic, please refer to Swaminathan and Tayur [2003]. Various researchers
have considered adaptive pricing and stocking problems (Alpern and Snower [1988],
Subrahmanyan and Shoemaker [1996], and Burnetas and Smith [2000]). Petruzzi and
Dada [2002] considered deterministic demand parameterized by one parameter. Chen
and Simchi-Levi [2004a,b] considered coordinating pricing and inventory decisions in the
presence of stochastic demand over a finite as well as an infinite horizon. Federgruen and
Heching [1999], Feng and Chen [2003], and Feng and Chen [2004] considered similar
problems. However, to the best of our knowledge there is no literature that focuses on
joint optimization of investment, pricing, production andsales. In this chapter we propose
to use the game-theoretic paradigm of sampled fictitious play to partly address this issue.
To precisely capture the effectiveness of the algorithm in reality, we will include major
features of the manufacturing system, but only to the extentthat the problem can still be
solved to the optimum, so that we can compare the result of thealgorithm to the global
optimum.

6.2 The Joint Optimization Problem

As described in the introduction, the joint optimization problem is composed of four
important decisions. These four decision modules are formally introduced in 6.2.1. The
modeling assumptions and the model are described in 6.2.2. Finally in 6.2.3, we point
out the complexity of this problem.

6.2.1 Decision Modules

Following the description in Section 6.1, four important decision modules are defined
as follows. Note that for simplicity, we assume that the planning horizon is discretized
into N periods with equal length.

• Capital Investment (CI): in general, CI module will decide the type (dedicated,
reconfigurable, or flexible) and the capacity of the production line. However, to
simplify the analysis, we assume that we can only build a dedicated production line
that produces only one type of vehicle. Thus, only decision for CI is the production
line capacity. Unlike all other modules, where decisions are made at each epoch,
the decision on CI is only made at the beginning of the planning horizon, before
the first epoch.

• Revenue Management (RM): at thenth epoch (n = 1, 2, . . . , N), the unit price
of the vehicle will be decided by the RM module. Note that in the general case
where we have multiple vehicle types, a price should be specified for each type.
However, since we limit ourself to a dedicated production line that produces only
one type of vehicle, our decision for the RM module is just a scalar (instead of a
price vector). The pricing decision will then generate the demand for the vehicles
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through a demand function (may be deterministic or stochastic).

• Production Scheduling (PS): at thenth epoch (n = 1, 2, . . . , N), the production
goal for the current period is decided by the PS module. Note that the production
goal cannot exceed the production line capacity decided by the CI module.

• Sales Planning (SP): at thenth epoch (n = 1, 2, . . . , N), the projected sales goal is
decided by the SP module. Notice that our sales goal may exceed the real demand
in the market, in this case, our real sales will be up to the demand.

6.2.2 The Markov Decision Process

When formulating the model, we would like to include most important features of the
problem, while at the same time avoid unnecessary complications. In our investigation,
we choose to focus on the stochasticity of the reliability ofthe production line and the de-
mand function. As discussed in Chapter 3, it is crucial to validate the value of the feature
we want to include in the model. In the joint optimization problem we are dealing with
here, the validation is straightforward. Since the stochasticity on demand and reliability
level will have a direct impact on our decisions on sales, production planning and prod-
uct pricing, the decisions obtained by ignoring the stochasticity may not even be feasible
for particular instantiations of the scenario. Therefore,to construct a satisfactory model,
these two features must be included. These two features alone will make the problem
non-trivial and difficult numerically.

Assumptions

• The planning horizon is discretized intoN + 1 periods,0, 1, . . . , N . The capital
investment decision is made at period 0. All other decisions, including revenue
management, production scheduling and sales, are made at the beginning of all
subsequent periods,n = 1, 2, . . . , N .

• We assume that the capacity of the production line can only bechosen from a
fixed finite set, and a fixed building cost is associated with each capacity choice.
This cost can either be paid by a lump sum deducted in period 0,or it can be paid
in installments. In the latter case, we assume that same amount of installment is
charged in each periodn (n = 1, 2, . . . , N). In our model, we assume that the
building cost is always paid in installments.

• All the problem data and decision variables related to the volume of the production
are for one shift (8 hours) only. In practice, multiple shifts (usually three, but in
the case where additional capacity is needed, a fourth shiftcan be arranged using
weekend time) can be arranged at the production facility, therefore the actual pro-
duction output may be several times its capacity. However, multiple shifts will only
complicate the computation of the cost and production output, without providing
much insights into the problem. Therefore, we assume only one shift is used in our
model.
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• The production line is assumed to be unreliable. Reliability of the production line
can be modeled at various operation levels, from micro levelto macro level. At
micro level, the reliability is modeled at station-level, and the actual production
output in each period is collectively decided by the statuses of all stations. Since
the interaction among stations can be extremely complicated, in practice we have
to use Monte Carlo simulation in order to obtain production output. At macro level,
we consider the production line as a whole and assume that itsreliability (and thus
production output) is governed by a probability distribution. Since we would like
to have an analytical expression for the operation of the production line, we will
model the reliability at macro level.

• Since the production line is unreliable and breakdown actually happens, we will
need to staff the maintenance crew and decide proper maintaining schedule. How-
ever, since we are viewing the reliability issue from a macropoint of view, the detail
on the maintenance of the production line will not be considered in our model.

• The demand function is assumed to be stochastic, reflecting the fact that the mar-
ket’s demand as a function of price cannot be precisely predicted when the pricing
decision is made. To simplify the formulation, we assume that we have a finite set
of possible demand functions, and for each period, one function will be randomly
selected from this set. This set is assumed to be known to the planner.

• No backlog is allowed. If the current inventory plus production is not enough to
satisfy the demand in some period, the demand is lost.

• The manufacturing cost depends both on the line capacity andthe period when the
production occurs.

• The holding cost of carryingi vehicles in the inventory in periodn is a fixed fraction
of the manufacturing cost fori units of products, supposing that they are to be
produced in periodn.

Notation

• N = {0, 1, . . . , N}: set of time periods.

• M = {m1, m2, . . . , mM}: set of feasible production line capacities.

• P = {p1, p2, . . . , p|P|}: set of feasible pricing decisions.

• γ: the discount rate.

• C(m), m ∈ M : the installment to be paid in each period for the initial investment
of building a production line with capacitym. C(m) is computed so that if produc-
tion line is designed to operate forL periods, the discounted sum ofL payments
equals the lump sum payment of the building cost. i.e.,

∑N
n=1 γn−1C(m) = cost

for building line with capacitym.
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• c(n, xp, xr, m), n ∈ N, m ∈ M , xr ≤ xp ≤ m: the cost of producingxr units of
products in periodn, with original production goalxp and the capacity ofm. The
portion of production that is planned but cannot be realizeddue to machine break-
down will not incur material and component cost. However, since the staffing of
workers is arranged a priori, the labor cost will still be charged during the break-
down. This implies that the production cost is the sum of two costs: the labor cost,
cl(n, xp, m), and the material and component cost,cm(n, xr, m). c(n, xp, xr, m) =
cl(n, xp, m) + cm(n, xr, m).

• ρn: As stated in our assumption, the reliability of the production line is modeled in
a macro manner. Here we useρn to represent the fraction of available production
capacity in periodn. By definition,ρn ∈ [0, 1]. We assume that in each period,
the production line can be operated at one of service levels listed in setL , where
L = {l1, l2, . . . , l|L |}. We further assume that the probability that the production
line operates under certain service levellk is the same for all period, and will be
denoted asPlk .

• D = {D1(·), . . . , D|D|(·)}: the set of possible demand functions. In our model, we
assume that each element inD is chosen with equal probability. In our model, we
assume that the general form of the demand function is exponential, with constant
elasticity (we are using similar modeling assumptions as inHagertyet al. [1988]).
To simplify the pricing part of the problem, we assume that the only factor that
influences the demand is our own pricing decision (thus excluding competitor’s
pricing and exogenous variables from the demand function).Di(p) can be formally
represented as follows:

Di(p) = eαipβi (6.1)

log Di(p) = αi + βi log p

αi ∈ {α1, . . . , αa}

βi ∈ {β1, . . . , βb}.

• dn(·) ∈ D: the realized demand function in periodn.

• h(n, i): the cost of holdingi units of inventory from periodn to periodn + 1.
According to the earlier assumption,h(n, i) = λ · c(n, i, i, m), whereλ is a pre-
specified constant.

The Model

The problem is a natural sequential decision process, with decisions being made se-
quentially from period0 to periodN . In period0, we make capital investment decision
m, wherem ∈ M . In periodn ≥ 1, the decisions for RM, PS and SP are made at
each epoch. Just as in traditional production control problem, the information required
to make optimal decisions for PS, RM and SP is current period and the level of inventory
beginning that period. In addition, since decision for CI sets the upper bound on the pro-
duction, its decision,m should also be required in each period. This enables us to define
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the state space for periodn ≥ 1 as the triple,(m, n, i), wherem is the capacity of the
production line,n is the current period, andi is the inventory entering periodn.
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Figure 6.1: The Markov decision model used.Sm,n,i is the decision being made at state
(m, n, i). F(m, n, i) is the set of feasible decisions at state(m, n, i) and will be defined
later. The demand function,dn, and the available fraction of the capacity,ρn, will be re-
alized after the decision is made. These two realized randomvariable will then complete
the state transition. Asρn anddn realized, the reward,RSm,n,i

m,n,i , is also generated and
accumulated.

After defining the states for the problem, we will define the feasible decisions at each
state, the state transition function, the reward function,and finally the functional equation.
These important elements of the model are described as follows, and also are illustrated
in Figure 6.1.

• At any given state(m, n, i), the set of feasible decisions,F(m, n, i) is defined by
following constraints:

xn ≤ m (6.2)

sn ≤ min{i + xn, max
Dj∈D
{Dj(pn)}}

xn, sn ≥ 0, integer

pn ∈ P.

• The state transition at state(m, n, i), with action(xn, sn, pn), after the realization
of ρn anddn(·), is defined by:

x̂n = min{xn, ρnm} (6.3)

ŝn = min{sn, i + x̂n, dn(pn)}

in+1 = in + x̂n − ŝn.
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As mentioned in section 6.2.2, we know thatρn ∈ L , P (ρn = lk) = Plk , and each
element withinD is chosen with equal probability. With these definitions and(6.3),
we can compute the transition probability,P a

A1,A2
(the probability of transiting from

stateA1 to A2, if actiona is taken), accordingly.

• The reward function at state(m, n, i), with actionSm,n,i = (xn, sn, pn), after real-
izations ofρn anddn(·), is defined by:

R
Sm,n,i

m,n,i (ρn, dn(·)) = ŝn · pn − c(n, xn, x̂n, m)− h(n, i), (6.4)

wherex̂n andŝn are as defined in (6.3).

• Functional equationf(·):

Forn = 0,
f(0) = max

m∈M
{f(m, 1, 0)−N · C(m)} . (6.5)

Forn ≥ 1,

f(m, n, in) = max
a∈F(m,n,in)

Eρn,dn(·)

{

Ra
m,n,i(ρn, dn(·)) + γf(m, n + 1, in+1)

}

= max
a∈F(m,n,in)

∑

ρn∈L

∑

dn(·)∈D

Pρn

|D|

{

Ra
m,n,i(ρn, dn(·))+
γf(m, n + 1, in+1)

}

, (6.6)

wherein+1 can be computed by using (6.3).

It should be noted that in order to drive the model, three important sets of problem data
are necessary: the building cost of the production line withdifferent capacity, the set of
demand functions, and the manufacturing cost as a function of capacities. The details on
the problem data are described later in Section 6.4, when we perform our computational
study.

6.2.3 Complexity of the Markov Decision Model

Here we will try to compute an upper bound on the computational effort required in
solving functional equations defined above. The required computational effort is mea-
sured by the number offlops1 required.

Forn = 0, the number of flops required is:

2M + (M − 1) = 3M − 1.

Forn ≥ 1, the number of flops required at each state(m, n, i) is:

CF |L ||D|(CT + CR + 2) + (CF − 1),

1flopsstands for floating-point operations. It is commonly used inproviding a measure on the compu-
tational complexity.
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whereCF represent the size of the feasible decision setF (m, n, i), andCT andCR repre-
sents the number of flops required to compute state transition and reward function respec-
tively. From equation 6.3, we haveCT = (2 + 6 + 2) = 10. From the provided problem
data, we can see that the labor cost is linear, the material cost is constant and both costs
are stationary. Thus from equation 6.4, we haveCR = (3 + 3 + 4) = 10. Therefore for
n ≥ 1, the number of flops required at each state(m, n, i) is:

22CF |L ||D|+ (CF − 1).

For n ≥ 1, we can compute the range oni for each(m, n) pair: 0 ≤ i ≤ m(n − 1).
Therefore, for somemk, the total number of flops to computef(mk, n, i), n = 1, . . . , N ,
0 ≤ i ≤ mk(n− 1), is:

(22CF |L ||D|+ (CF − 1))

N
∑

n=1

(mk(n− 1) + 1)

= (22CF |L ||D|+ (CF − 1))(mkN(N − 1)/2 + N)

Total number of flops required, can then be computed as:

(3M − 1) +
∑

mk∈M

(22CF |L ||D|+ (CF − 1))(mkN(N − 1)/2 + N) (6.7)

≤ (3M − 1) + (22|L ||D|+ 1)CFM(mMN(N − 1)/2 + N),

wheremM is assumed to be the largest capacity inM .

The dominating term in equation 6.8 turns out to be(11CF |L ||D|MmMN2) and all
constants exceptCF are well-defined either in the problem data and in the earliersection.
To demonstrate how largeCF can be, we look at the extreme case:

CF = mMDmax|P|.

Substitute it back into the expression of the bound, we have:(11Dmax|P||L ||D|Mm2
MN2).

From above bound expression, it is obvious that the size of the feasible-action set,
CF , is the key factor that makes this problem hard to solve in practice. This provides the
motivation for us to approximate the problem through decomposition along action space.

6.3 Game-Theoretic Model for the Joint Optimization
Problem

With the same notations as defined in the previous sections, we can formulate the
problem as a game:

• Players: each decision module (CI, RM, PS, and SP) is defined as a player. We
will use PCI , PRM , PPS, andPSP to represent the player for each of the decision
module.
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• Strategy Space:in the game-theoretic model we proposed, each player must have
some probabilistic beliefs about all other players’ behaviors. Each realization from
such belief on other players’ behaviors will create a reduced MDP, where the deci-
sion variables are only this player’s decision. Therefore the strategy space for each
player should be the policy space of this player. However, asdefined in equation
6.2, there are interdependencies between players’ decision. To be more specific,
from equation 6.2, we can see thatPPS ’s decision relies onPCI ’s decision. Simi-
larly, PSP ’s decision relies on bothPPS ’s andPRM ’s decisions. Unfortunately, one
important requirement for modeling our joint optimizationproblem as a game is
the assumption that all players select their actions simultaneously. Therefore, no
matter what kind of beliefs each player has for all other players, it is possible that
the combined decisions from all players may be infeasible.

• Payoff function: the assignment of payoff values require feasible joint decisions.
Therefore, in the case where joint decision is infeasible, the payoff function is not
defined.

The feasibility issue mentioned above originates from our attempt to model a con-
strained problem with an unconstrained model. Thus, we musttransform the constrained
optimization problem into an unconstrained problem first before putting it in the game-
theoretic framework.

In the following section we will describe how to design proper transformation in order
to turn our constrained optimization problem into an unconstrained problem that can be
modeled by the game-theoretic framework.

6.3.1 Ensuring Feasibility

While implementing a game theoretic method such as fictitious play or sampled ficti-
tious play to solve a complex system optimization problem, one has to ensure feasibility
of joint actions by the players. In the case of sampled fictitious play, the concern for feasi-
bility arises from the fact that the algorithm assumes that each player has a finite strategy
set that does not depend on actions of other players and therefore, a joint strategy cor-
responds to a point in a fixed hyper-rectangular subset of theinteger lattice. Moreover,
players sample their individual actions independently, without knowing what other play-
ers have sampled from their respective strategy spaces. This may cause a serious problem
if feasibility of a particular action by a player depends on what other players have played.
In terms of an optimization problem, the above observationsmean that the only allow-
able constraints are box-constraints with fixed lower and upper bounds on the variables.
However, this is rarely the case in most constrained optimization problems including the
production systems optimization problem at hand. In particular, the PS player may never
decide to produce more than the capacity chosen by the CI player. Similarly, the SP player
may never sell more than the minimum of the demand decided by the RM player and the
total inventory on hand including the most recent production decided by the PS player.
To handle the feasibility issues outlined here, we propose avariable transformation called
theproportional transformation.
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Figure 6.2: Interacting diagram indicating how decision modules affect each other.

The main idea behind this transformation is quite intuitive. Instead of having the PS
and the SP players choose the actual production level and theactual sales in a period,
we let them choose the fraction of maximum allowable production and the maximum
possible sales. Mathematically, instead of lettingx(m, n, i) be the decision variable for
the PS player, we letα(m, n, i) be the decision variable, whereα(m, n, i) is the fraction
of realized capacity that is utilized for production. Similarly, we letβ(m, n, i) be the
decision variable for the SP player, whereβ(m, n, i) is the fraction of the minimum of
the inventory at hand after production and the realized demand. It is clear from the
definition that these two decision variables lie in the interval [0, 1] and no matter what the
actual capacity, or inventory or the period is. This helps ustransform the optimization
problem at hand with complicated side constraints into a problem with box-constraints.
Such a problem can be handled by sampled fictitious play afterdiscretizing the interval
[0, 1].

One main benefit of the proportional transformation is that it decomposes the decision
spaces of various players. In particular, players can choose their own policies without
regard to choices made by other players. This can be illustrated as follows. For simplicity,
assume that the optimization problem is deterministic, i.e. the machines are reliable and
the demand is deterministically set by the price. The joint optimization problem at hand
before applying the proportional transformation can then be represented schematically
as an interacting diagram shown in Figure 6.2. As illustrated in the figure, a solid line
with arrow indicates a particular impact one module has on another module and a dotted
line represents that decisions made at two connecting decision modules are mutually
constrained.

Obviously, the constrained pairs in Figure 6.2 are the majorobstacles in decomposi-
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tion, and the purpose of proportional transformation is to break these bonds. Once these
bonds are broken, we can then define player from these modulesas usual. It is impor-
tant to note however that even though this representation resolves feasibility issues, the
reward of a specific policy employed by a particular player still depends on policies of
other players. However, this is relevant only while computing the best replies and not
while sampling policies from the empirical distributions.

The proportional transformation is formally defined at eachstate(m, n, i) for the
combined decision(m, {α(m, n, i)}, {β(m, n, i)}, {p(m, n, i)}) as:

x̃(m, n, i) = α(m, n, i) ·m (6.8)

s̃(m, n, i) = β(m, n, i) ·min

{

i + x̃(m, n, i), max
Dj∈D

{Dj(p(m, n, i))}

}

.

Note however that since player CI makes decision onm, during each iteration, when a
decision is sampled from player CI’s history, it is a specificcapacity. This suggests that
if we only care about player PS, RM, and SP’s best replies against this specific capacity,
state variablem is really not necessary and can be removed from the state space. The
benefit of doing so is that the computational efforts of computing best replies are reduced
by a factor ofM (except for player CI). However, ifm is removed from the state space,
player PS, RM, and SP’s best reply are not dependent onm and in the subsequent iter-
ations, it’s very likely that the sampled decisions are computed under different capacity
than the current sampled capacity from player CI. This constitutes a tradeoff between
execution speed and the quality of best replies. While performing the numerical exper-
iments, we tried both approaches. However, in this chapter,we consider only the case
wherem is removed from the state space. The proportional transformation, afterm is
removed from the state space, can be written as:

x̃(n, i) = α(n, i) ·m (6.9)

s̃(n, i) = β(n, i) ·min

{

i + x̃(n, i), max
Dj∈D

{Dj(p(n, i))}

}

.

The best reply problems for each module is presented in the following sections. In
each best reply description, we will describe the version with capacity as state variable
and the version without.

6.3.2 Best Reply Problem for the Capital Investment Module

From Figure 6.1, we can see that CI only makes the decision at the beginning of the
horizon. In the case where capacity is not part of the state variable, for eachmk ∈ M
we can computef(mk, 1, 0) with other players’ policies fixed at({α(n, i)}, {β(n, i)},
{p(n, i)}). In this case, CI’s problem is just a one-dimensional maximum finding problem
that reduces to pure enumeration over allmk’s.

m∗ = arg max
mk∈M

{f(mk, 1, 0)−N · C(mk)} (6.10)
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6.3.3 Best Reply Problem for the Production Scheduling Module

Assume that other players’ decisions are fixed at(m, β(n, i), p(n, i)) at each state
(n, i). With this given decision and someα, we can compute the transformed point
(x̃(n, i), s̃(n, i), p(n, i)) at each state by using equation 6.9. The state transition andthe
reward function remain the same. The best reply at each state(n, i) is then:

α(n, i) = arg max
α∈[0,1]

Eρn,dn(·)

{

R
a(n,i)
(m,n,i)(ρn, dn(·)) + γf(m, n + 1, in+1)

}

,(6.11)

wherea(n, i) = (x̃(n, i), s̃(n, i), p(n, i)).

Note that we need a finite variable domain, thereforeα ∈ [0, 1] is actually replaced in
implementation with{0, δ, 2δ, . . . , 1}.

6.3.4 Best Reply Problem for the Revenue Management Module

Assume that other players’ decisions are fixed at(m, α(n, i), β(n, i)) at each state
(n, i). With this given decision and somep, we can compute the transformed point
(x̃(n, i), s̃(n, i), p) at each state by using equation 6.9. The state transition andthe reward
function remain the same. The best reply at each state(n, i) is then:

p(n, i) = arg max
p∈P

Eρn,dn(·)

{

R
a(n,i)
(m,n,i)(ρn, dn(·)) + γf(m, n + 1, in+1)

}

, (6.12)

wherea(n, i) = (x̃(n, i), s̃(n, i), p).

6.3.5 Best Reply Problem for the Sales Planning Module

Assume that other players’ decisions are fixed at(m, α(n, i), p(n, i)) at each state
(n, i). With this given decision and someβ, we can compute the transformed point
(x̃(n, i), s̃(n, i), p(n, i)) at each state by using equation 6.9. The state transition andthe
reward function remain the same. The best reply at each state(n, i) is then:

β(n, i) = arg max
β∈[0,1]

Eρn,dn(·)

{

R
a(n,i)
(m,n,i)(ρn, dn(·)) + γf(m, n + 1, in+1)

}

, (6.13)

wherea(n, i) = (x̃(n, i), s̃(n, i), p(n, i)).

Note that we need a finite variable domain, thereforeβ ∈ [0, 1] is actually replaced in
implementation with{0, δ, 2δ, . . . , 1}.

6.3.6 The Complexity Bound for Solving the Decomposed MDP

We will first find out number of flops required to complete an iteration of SFP. From
player CI’s best reply expression, number of flops required is the same asn = 0 in the
global case, i.e.3M − 1. For other players, combined flops required at each state is:

(CPS+ CRM + CSP)|L ||D|(CT + CR + 2) + (CPS− 1) + (CRM − 1) + (CSP− 1),
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whereCPS, CRM andCSP represent the number of decisions to be evaluated at each state
for player CI, RM, and SP respectively. Term|L ||D|(CT +CR+2) is the effort required in
evaluating the expected value of a decision, and terms(CPS−1), (CRM−1), and(CSP−1)
are number of comparisons required for player PS, RM and SP.

From the formulations of the best reply problems, we can see that CPS = CSP =
(1/δ + 1), andCRM = |P|. Forn ≥ 1, the upper bound on the number of states is:

N
∑

n=1

(mM(n− 1) + 1) = mMN(N − 1)/2 + N.

Therefore, total number of flops required for an iteration ofSFP is bounded by:

(3M − 1) + (mM

N(N − 1)

2
+ N)((CPS+ CRM + CSP)(22|L ||D|+ 1)− 3)

≤ (3M − 1) + (mM

N(N − 1)

2
+ N)(|P|+

2

δ
+ 2)(22|L ||D|+ 1) (6.14)

The dominating term in above expression is11(|P| + 2/δ)|L ||D|mMN2. To roughly
have an idea about the saving we enjoy with decomposition, wecan compute the ratio
between the dominating term in the global case and the dominating term here.

11Dmax|P||L ||D|Mm2
MN2

11Ns(|P|+ 2/δ)|L ||D|mMN2

=
Dmax|P|MmM

Ns(|P|+ 2/δ)
, (6.15)

whereNs is the number of SFP iterations used. After problem data is described in sec-
tion 6.4, we will compute this ratio and use it as an estimate to possible savings we get
from decomposition.

6.4 Vehicle Manufacturing: A Numerical Case Study

In this section, we report detailed results of numerical experiments done using real
world data from a major company in the automotive sector.

6.4.1 Problem Data

Recall from section 6.2.2 that the pieces of data required are the plant building costs,
stochastic price-demand functions, production costs, inventory costs, and plant reliabil-
ity data. The general trend in the cost data as plotted in Figure 6.3 was established by
discussions with employees of a leading automobile manufacturing corporation. The ac-
tual numbers shown in this figure have been purposefully distorted for confidentiality
concerns.

• The planning horizon was assumed to beN = 10 periods.
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• Plant building cost was assumed to be a function of the plant capacity. The cost
was amortized over a finite horizon of lengthN = 10, i.e., the horizon used for the
optimization problem.

• The price-demand functions were assumed to be exponential,i.e., of the form
D(p) = eapb. In order to introduce stochasticity, we parameterized demand func-
tionsDi(·) in the setD by parametersai andbi. In particular, we included three
possible demand functions that indicate low demand, normaldemand, and high de-
mand. This was achieved by setting|D| = 3, and(ai, bi) ∈ {(48.5573,−4.5076),
(49.0478,−4.5076), (49.5383,−4.5076)}. In each period, the actual realized de-
mand is chosen from one of these three functions with equal probability.

• The variable production cost per vehicle was assumed to decrease with increasing
plant capacity due to economies of scale. It was also assumedto be linear in the
number of units produced and stationary across time periods.

• The inventory holding cost per vehicle at the end of a period was assumed to be 20
percent of the unit production cost in that period.

• The plant reliability valueρ is assumed to be an element of the setL = {0.6, 0.66,
0.7, 0.74, 0.8}. One of these values is selected with equal probability in each pe-
riod.

• The time value of money was ignored, i.e. the discount factorγ was set to1.

• α andβ were assumed to take values in the set{0, 1/300, 2/300, . . . , 1}, i.e.,ǫ =
δ = 1/300. To ensure fair comparison between SFP and other alternatives (e.g., a
standard MDP solver), we assume that all solution procedures will search within
the space ofM × AN × BN × P.

• 20 iterations of SFP were run on a Pentium 4 (2.8 GHz), 1 GB RAM machine with
RedHat Linux operating system.

6.4.2 Experimental Results and Analysis

In our numerical experiments, we looked at the expected values achieved by the poli-
cies obtained by both the SFP solver and a standard MDP solver. Also, we looked at
computational time required to obtain above policies in both solvers. Although not men-
tioned earlier, SFP is numerically used as a search algorithm, and a best value and its
associated policy will be kept and updated throughout algorithm execution. In our im-
plementation, the best value and associated solution are updated at the end of each best
reply evaluation in each iteration.

The comparison results are shown in Table 6.1. Note that for the MDP solver, enumer-
ating all possible capacities cannot be finished in a reasonable amount of time. Therefore,
we handpick a capacity which is made to be the optimal capacity by manipulating prob-
lem data and try to solve the single-capacity problem. Sincethe computational effort
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Figure 6.3: Important problem data: (a) Production line building cost, paid by period, as
a function of capacity. (b) Demand as a function of price. (c)Variable cost as a function
of capacity.

is identical for each capacity, we can estimate the total time required to enumerate all
possible capacities. The time required to compute the optimal value for a single capacity
is 5,866.3 minutes (or 4.07 days), since we have 33 capacities, the estimated execution
time is 193,587.9 minutes (or 134.44 days). SFP solver required 13.1 minutes or was
approximately 14,778 times faster than the (estimated) global solver execution time, and
the quality of the solution was within3% of the optimum. The evolution of best values

Algorithm Execution time
Objective value ratio
(versus global optimum)

MDP solver 134.44 days∗ 1.0
SFP solver 13.1 min. 0.9715
∗This execution time is estimated.

Table 6.1: Performances of the MDP solver and the SFP solver

against iterations for the SFP solver is plotted in Figure 6.4. As plotted in Figure 6.4, we
can see that the SFP solver makes most improvements during early iterations. In fact, it
stops improving after15th iteration. This empirical finding is why we use 20 iterationsas
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the stopping criterion for the SFP solver.
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Figure 6.4: Best values plotted against iterations, for theSFP solver.

Notice that since we initiate the SFP solver with some arbitrary initial solution, we
can repeatedly restart the SFP solver several times (with different initial solutions) and
just keep the best solution in these runs. As an example, if werestart the algorithm 10
times, and randomly generate the initial solution each time, the best objective value can
be brought to within1% of the global optimum. Even in this case, the SFP solver is still
about 1,477 times faster than the global solver.

6.4.3 Obtaining Managerial Insights via Optimizations

As mentioned in the introduction, the ultimate goal of this research effort is to take
advantage of the speed of the SFP optimization algorithm to develop the understandings
on the impacts of key decisions by quickly considering multiple problem scenarios.

As an example, imagine the scenario where we are the production line manager, and
we would like to find out the relationship between the reliability of the production line
and the associated inventory stocking level. We may accomplish this by solving the inte-
grated problem via the SFP solver for a variety of different reliability levels. Specifically,
suppose we consider several different average reliabilitylevels. To reliability leveli, we
associate the set of service levelsLi = {0.20, 0.26, 0.30, 0.34, 0.40} + 0.05i. For each
reliability level, we approximate an optimal policy by running the SFP solver. With these
policies, we can run multiple instances of Monte Carlo simulations onρn anddn(·), and
observe the resulting inventory level in each case. To be more specific, we will run 1,000
instances of Monte Carlo simulations for each reliability level, and compute the average
inventory level. Plotting the resulting relationship between mean service level and inven-
tory, we can fit a linear regression equation and use it to predict the average inventory
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level for a given reliability. Figure 6.5 illustrates the result of such an analysis, where to
speed up execution we setD, the collection of demand functions, to be a singleton that
includes only the normal demand function. In this case, the computed regression equa-
tion is: I = −20.10r+20.7924, wherer is the mean reliability level, andI is the average
inventory level. Note that the policy used above is selectedfrom a pool of candidate poli-
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Figure 6.5: Average inventory levels versus mean reliability levels.

cies, all generated by the SFP solver with different initializations. The selection criterion
is the objective function value. In other words, we just pickthe policy that returns highest
expected profit. However, when comparing the average inventory levels of these policies
with that of the global optimal policy, we observe that the closeness of objective function
values does not imply the closeness of resulting average inventory levels. Furthermore,
the policies found by the SFP solver, even with almost identical expected profits, can have
very different inventory stocking patterns. This suggeststhat the inventory stocking level
may not be a crucial factor when the expected profit is optimized. As expected, one can
see that the inventory level grows almost linearly as the reliability of the production line
drops. Also, as reliability level goes over certain level, it becomes optimal to implement
a zero-inventory policy.

6.5 Conclusion

In today’s competitive environment in manufacturing operations, it is important to
make coordinated, near optimal decisions at managerial, strategic and operational levels
such as capital investment, revenue management and production planning. The mathe-
matical model of this decision problem is extremely complicated and potentially involves
a multitude of exogenous as well as endogenous factors. In this chapter, we presented
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a simplified model that captures many of these factors - capital investment, revenue
management, production planning, random machine failures, and stochastic demand -
yet remains computationally tractable, though still challenging to traditional optimiza-
tion methods such as dynamic programming. To overcome this computational difficulty,
we used the game-theoretic optimization paradigm of Sampled Fictitious Play. SFP has
emerged as an effective discrete optimization heuristic for unconstrained problems in the
recent past, as demonstrated in Chapter 5. However, to applyit to our manufacturing
optimization model, we extended it to handle constraints. This was done by applying a
variable transformation to the original dynamic programming formulation to convert it
into a finite game in strategic form, making it amenable to SFP. Although illustrated on
a specific formulation in this chapter for simplicity and concreteness, we believe that our
approach can be generalized to a class of sequential decision problems. In that sense, this
approach may be viewed as a heuristic for approximate dynamic programming.

We considered a case study from the automotive manufacturing sector to perform
numerical experiments. SFP was able to find near optimal solutions about four orders of
magnitude faster than conventional dynamic programming methods when applied to the
vehicle manufacturing problem. Since SFP can be parallelized easily, this performance
can be further improved. The most important utility of this approach lies in its ability
to quickly solve multiple scenarios. The potential of usingthis tool as a way to develop
managerial guidelines is demonstrated in the final section of this chapter. We hope that
in the future, this technique can be used to develop data-driven rules of thumb to guide
managerial decisions in complex manufacturing operations.
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CHAPTER 7

Sampled Fictitious Play: Conclusions and Future Work

The first part of this thesis is devoted to issues related to centralized optimization
problems. Chapter 3 focuses on model building process. Chapter 5 focuses on the use
of SFP algorithm in general unconstrained black-box optimization problems. Finally,
Chapter 6 focuses on the extension of SFP algorithm so that certain class of constrained
optimization problems can also be solved with it.

7.1 Summary of Contributions

In Chapter 3, before even going into any particular algorithm, we first discussed im-
portant modeling considerations. As model builders, we usually look for completeness
and realism. However, as model users, we also want the model to be economic: it should
only contain information that is really valuable and absolutely necessary. Before adding
any feature to the model, no matter how important it may soundintuitively, we should
systematically validate its value. The stochasticity of the model is a good example. Due
to the stochastic nature of many real-world problems, it is commonly viewed as a must,
and models without it are often viewed as questionable. However, in the specific sce-
nario we studied, we surprisingly found that the value of uncertain information turns out
to be zero, implying the redundancy of a stochastic model. This case study provides an
example on how valuable simple analysis can be in building models.

Chapter 5 presents a general parallel implementation of theSFP algorithm for solving
unconstrained discrete optimization problems. Using pureenumerations in finding best
replies is computationally feasible since we can take advantage of the parallel implemen-
tation of the algorithm. This capability is shown to be extremely useful in solving the
real-world problem of coordinated traffic signal control.

Chapter 6 presents our attempt in extending the SFP algorithm to constrained op-
timization problems. In particular, we use a joint optimization problem in production
systems, modeled as a Markov decision process, for case study. The challenge of this
extension lies in the handling of constraints that govern players’ interactions, and we
proposed a novel feasible space transformation technique to deal with this issue. With
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this enhancement, we can solve the problem equipped with real-world data four orders of
magnitude faster than the global solver, with satisfactoryaccuracy (within 3% of the true
optimum).

7.2 Future Work

The proposed future work can be classified into two major categories: methodology-
related and application-related.

On the methodology development front, extending the SFP algorithm to a more gen-
eral class of constrained optimization problems remains the most important issue. Other
researchers in our research group are also addressing this issue [Ghateet al., 2006] by
developing more variants of SFP. However, for a complex real-world problem, given all
the available algorithm variations, it remains unclear howwe should pick the best one.
One interesting idea in addressing this may be to look for theopportunity in borrowing
techniques used in other state-of-the-art metaheuristics, like Genetic Algorithms (GA).
GA, like the original SFP, is by construction only suitable for unconstrained optimization
problems. However, researchers in the GA community have a long history of devel-
oping various techniques in dealing with feasibility issues raised when GA is used in
constrained optimization problems. With these techniques, GA can be used in many real-
worldNP-hard problems (e.g., traveling salesman problem). Of course, these techniques
are usually highly problem-specific and hard to generalize.However, by reviewing the
GA literature on these techniques, we may be able to find inspiration in dealing with
specific classes of problems.

One example along this line of thought is the treatment of multidimensional knapsack
problems (MKP). Large-scale MKP is an important real-worldproblem widely studied
in the metaheuristics community, GA in particular. In our recent research, we have bor-
rowed the “repair operator” idea in GA, applied it to large MKP test cases, and obtained
comparable success.

On the application-related research front, we look to continue our work on traffic-
related and production system-related problems.

For our work on CoSIGN, a natural extension is to test CoSIGN on other even larger
and more detailed traffic networks. The use of more advanced traffic simulations may also
be desirable in modeling more complicated traffic characteristics. All these factors, when
combined together, will make an already challenging problem even more so. Of course
we can address this issue by throwing in more parallel computing resources, however,
this may not be the only way to go. Dell’Olmo and Mirchandani [1996] suggest the
use of simplified simulations when the network-wide performance needs to be evaluated
frequently. In BESTREPLY, the relative superiority of each player’s strategy selections
is what we really care about, and a simplified simulation thatcan accurately provide this
relative performance comparison will be good enough, even if in absolute terms it is just
an approximation. Of course, in order to take this route, we have to go much deeper into
the structure of the problem, and carefully design an approximation scheme. Garciaet
al. [2000]’s work on dynamic vehicle routing affirmed that usingapproximate best reply
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in SFP is indeed a promising direction. Garciaet al. [2000] proposed to solve a dynamic
vehicle routing problem by using SFP algorithm. However, the best reply function was
constructed by more than just pure enumeration over route alternatives (which explode
exponentially in number of nodes). Instead, they proposed to approximate marginal time-
dependent link travel times and compute time-dependent shortest paths as best replies.
We avoid going into technical details here but the relevant highlights from their work is
that by exploiting the problem structure carefully, the useof pure enumeration can be
avoided, and they end up requiring only one simulation per iteration.

Another possible future work on the traffic-related application is the combination of
both dynamic vehicle routing and coordinated traffic signalcontrol. Much recent research
in the field tries to address this issue, however, these attempts have resulted in only limited
success, mostly due to the complexity of the problem. With techniques introduced in this
thesis, and by applying proper approximation scheme to the best reply computations, we
hope to tackle this combined problem.

For our work on production system-related problems, we are interested in the benefit
the solver developed in Chapter 3 may have in an industrial setting. When considering
all direct and indirect benefits it may bring to the production system, it is estimated that
the methodology may bring savings in the scale of hundreds ofmillions of dollars. It will
be a major achievement if such system can be built and deployed.
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PART II

Market-Based Approach For
Decentralized Resource Allocation

Problem

CHAPTER 8

Market-Based Approach: An Introduction

8.1 Motivation

We have already seen in Part I how to optimize complex systemsby using SFP al-
gorithms. The use of SFP helps us handle some undesirable properties in optimization
problems, e.g., discreteness, ill-structured objective function, and size. However, in some
cases, a central optimization may not even be possible due toeither or both of following
two reasons:

Decentralized control. Authority may be by construction decentralized, such that in-
dividual decision makers, oragents, have control over respective elements of the
overall problem. For example, agents may have discretion over which tasks they
perform, or rights over portions of the resources.

Distributed information. Information bearing on possible or preferred allocations may
be distributed among the agents. For example, each agent mayhave its own pref-
erences over task accomplishments, and knowledge of its owncapabilities and re-
sources. Such information is generally incomplete, asymmetric, and privately held,
so that no central source could presume to obtain it through simple communication
protocols.
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In these cases, traditional optimization approaches that aim at centralized control cannot
be used and we need to focus on designing mechanisms that willencourage independent,
self-interested decision makers to act in a way such that theoutcome generated by their
collective actions is as close to a global optimum as possible. Note that although we are
interested in guiding individuals to a global optimum, it doesn’t mean that we will try
to make individual decision makers collaborate with each other. It is essential for each
decision maker to act solely in its own interest.

8.2 Background

8.2.1 Market-Based Resource Allocation

Arguably [Wellman and Wurman, 1998], markets comprise the best-understood class
of mechanisms for decentralized resource allocation. Inmarket-oriented programming
[Wellman, 1993], ormarket-based control[Clearwater, 1995], agents representing end
users (those requiring task accomplishments), resource owners, and service providers
issue bids representing exchanges or deals they are willingto execute, and the market
mediators determine allocations of resources and tasks as afunction of these bids. In a
well-functioning market, the price system effectively aggregates information about values
and capabilities, and directs resources toward their most valued uses as indicated by these
prices. As Ygge and Akkermans [1999] put it:

local data + market communication = global control.

Note that in previous studies on market-based approaches, competitive behaviors
(meaning that agents take prices as given and neglect their influences on prices) are usu-
ally assumed, and as noted by Cheng and Wellman [1998], when certain well-defined
conditions are met, classical general equilibrium models can be used to solve general
convex-programming problems.

However, in the cases where agents are aware of the influence of their own actions on
prices, they may exhibit strategic behaviors, and classical general equilibrium analysis no
longer applies. The existent of these strategic behaviors proves to be a major difficulty
in designing market mechanisms for decentralized resourceallocation problems, because
for unbounded agent strategy spaces, it is virtually impossible to evaluate the performance
of given market mechanism, let alone choose an optimal one.

Even if we can approximate agents’ strategy spaces finitely,predicting agents’ be-
haviors (and identifying associated payoffs for all agents) can still be very hard. This is
mostly due to the fact that agents are self-interested and will seek to optimize only their
payoff functions. Each agent’s optimal decision is a function of other agents’ decisions,
which are also functions of this agent’s decision, ad infinitum. For these scenarios, a
solution that is stable in the sense that each agent cannot improve its payoff by deviating
unilaterally, will be ideal. As discussed in Chapter 2, sucha solution concept is called
Nash equilibrium. For each market mechanism, if we can definesome collective measure
that quantifies overall allocation efficiencies for the NE, it can then be used in evaluating
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various market mechanisms.

Finding NEs is a challenging task, especially if each agent’s initial preference is char-
acterized by some probability distribution (i.e., the information is incomplete from an
individual agent’s perspective). To address various issues related to the identification of
NEs in practice, we have to perform game-theoretic analysisempirically. Game-theoretic
analysis is summarized in the following subsection.

8.2.2 Game-Theoretic Analysis

In order to prepare for the game-theoretic analysis, we willneed to specify the payoff
matrix that contains payoffs for all agents in each possiblejoint strategy combination. In
our analysis, these payoffs in the payoff matrix are evaluated by runningmarket games,
where both market mechanism and agent strategies are implemented computationally. In
a typical market game, strategies are implemented as software programs (software agents,
or just agents) and are initially endowed with random resources and random preferences
according to some known distributions. At designated intervals, agents receive informa-
tion (e.g., prices) from market mechanisms. Based on this information, agents will then
perform allowable actions (e.g., bidding). The payoffs forall participating agents will be
determined by combined actions over the horizon. From this,we can view each strategy
as a mapping from the product of initial information (endowments and preferences) and
market information to the actions. Since market information is determined by the inter-
action of strategies, the actions chosen are ultimately a function of initial information and
other agents’ actions. In order to capture every detail of agents’ interactions, an extensive
form game tree must be used. However, to simplify the analysis, we will collapse the
extensive form game into a strategic form game by defining payoffs as functions of strat-
egy choices only. To achieve this, we use the probability distribution governing initial
information to compute theexpected payofffor each strategy combination. To evalu-
ate expected payoff computationally, we can draw enough samples from the probability
distribution of initial information and execute market simulations for these samples.

8.2.3 Challenges

In this chapter, we motivate the use of markets when decentralization is embedded in
the resource allocation problem. Although under some well-defined conditions (e.g., see
Cheng and Wellman [1998]), market mechanisms are shown to beideal devices in guiding
resource allocations in a decentralized manner, properly measuring the performance of
each market mechanism remains a major challenge. The introduction of Nash equilibrium
as a solution concept in market-based resource allocation scenarios aims at addressing
this issue. However, setting up market-based resource allocation scenarios for the purpose
of identifying Nash equilibria is shown to be a non-trivial task. Various simplifications
and techniques are required in order to make game-theoreticanalysis possible. More
specifically, we must complete following tasks (as noted by MacKie-Mason and Wellman
[2006]): (1) choose market mechanism, (2) generate candidate strategies, (3) estimate the
resulting “empirical game”, (4) solve the empirical game, and (5) analyze the result. This
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procedure can be iterative, meaning that the result we get instep (5) can be feedback to
step (1) in order to guide the selection of better market mechanism (in terms of allocation
efficiency).

This part of thesis will focus on steps (3) to (5). In the following chapters, we will
propose some techniques one can use in these steps. And in theconcluding chapter, we
will use a dynamic task allocation scenario as an example in demonstrating how these
steps work in practice.
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CHAPTER 9

Market-Based Approach: An Empirical Methodology

9.1 Iterative Mechanism Selection: An Overview

It bears repeating that the motivation of introducing market mechanisms to the de-
centralized resource allocation problems is our inabilities in controlling these systems
centrally. Thus the role of a planner evolves from being a “controller”, who seeks op-
timal control policy, to being a “facilitator”, who seeks a set of market mechanisms so
that selfish decision makers will be guided to collectively achieve the highest possible
allocation efficiency. This chapter will go into details on aseries of standard procedures
in designing these market mechanisms. In Section 9.2, we introduce a software platform
that can be used in simulating market games. In Section 9.3, we highlight some impor-
tant guidelines in designing agent strategies. In Section 9.4, we discuss issues related to
the search for the NE in an estimated empirical game. Finallyin Section 9.5, we con-
clude the chapter and we review some important directions inthe study of market-based
approaches.

9.2 Simulating Market Games

For all decentralized resource allocation problems we study, there are two major com-
ponents: 1) agents that represent individual decision makers, and 2) market mechanisms
that allow exchange of resources. Due to the decentralized nature of the problem, most
agent-specific information, including preferences over tasks, capabilities in performing
tasks and resource holdings, are endowed to each agent. Moreover, probability distribu-
tions are usually used in describing much of these information to account for uncertainties
involved in the problem. This probabilistic representation of the problem makes it very
difficult to analytically evaluate the performances of combinations of strategies. To es-
timate the performances of combinations of strategies, we can define a market game as
a collection of agents and market mechanisms, and execute Monte Carlo simulations, in
which each agent’s related information is generated according to the governing distribu-
tion. To support massive simulation efforts, we have developed a software platform that
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can be used to provide comprehensive services, including: 1) a general scripting auction
engine, AB3D [Lochner and Wellman, 2004], that can be used indefining a wide range
of market mechanisms, 2) a general market game engine that can be used in generating
market games probabilistically, 3) a set of communication protocols that can be used in
designing software agents capable of communicating with components 1) and 2), and 4)
a scorer that evaluates performances of all agents after a game ends. In the following
paragraphs, we provide more details on these components.

1. Scripting auction engine. The idea of designing a flexible software platform for
running market game simulations is not new. In fact, AB3D (and also its support-
ing functions) can be viewed as a redesigned and extended version of the Michigan
Internet AuctionBot [Wurmanet al., 1998]. Like the AuctionBot but more flexi-
ble, AB3D supports a wide range of market mechanisms, specified in a high-level
rule-based auction scripting language. The AB3D scriptinglanguage exposes pa-
rameters characterizing the space of bidding, informationrevelation, and allocation
policies [Wurmanet al., 2001]. With proper programming constructs, flow control
can also be easily achieved.

2. Market game engine. To generate a market game probabilistically, we need to
provide both common information and agent-specific information, as described as
follows:

• Common information: this refers to important information agents should
know even before the game is actually executed. Most common informa-
tion is related to the structure of the game, including (but not limited to): i)
length of the game, ii) number of agents in the game, and theirrespective
roles, if any (e.g., buyer, seller), and iii) number and typeof auctions used in
the game.

• Agent-specific information: in a typical decentralized resource allocation prob-
lem, each agent is endowed with information that is only accessible to itself.
This information may include task properties (e.g., the value for fulfilling the
task, the deadline of the task, and the resource requirementof the task), and
initial resource endowment.

It’s not uncommon for the above information to be structuredhierarchically (e.g.,
information can be represented as a tree). To effectively represent and handle such
structures, we use XML in describing this information. To support probabilistic
game generation, we developed a set of programming constructs, called game de-
scription language (GDL), to support basic variable declarations, looping, and ran-
dom variable generations. A detailed description on GDL is available in Appendix
B.

GDL is general enough to describe a wide class of market games, including TAC
classic, a travel shopping game [Wellmanet al., 2001], information collection sce-
narios [Chenget al., 2004b], job scheduling in reconfigurable production lines
[Schvartzman and Wellman, 2006], and dynamic task allocation (in Chapter 11).
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3. Agent interface. The game system implements a communication interface through
which bids, queries, and any other game interactions are transmitted.

4. Scorer. For each market game, we must define a procedure to evaluate the perfor-
mance of each agent on the completion of the game. Scoring typically entails the
assembly of transactions to determine final holdings, and for each agent, an allo-
cation of resources to activities maximizing its own objective function. For each
agent and the strategy it represents, this score indicates how well it performs in
this particular strategy combination for some realizationof the agent preferences.
It should be noted that scoring mechanism can be highly game-dependent, thus it’s
up to the developer of the market game to provide the corresponding scorer.

By assembling the above components we have a general environment for executing
market games. The interactions of the above components is illustrated in Figure 9.1. For
detailed descriptions and a working AB3D market gaming platform, please refer to
http://ai.eecs.umich.edu/AB3D/.

Figure 9.1: General market gaming platform, depicted at functional level.

With this general market gaming platform, we can execute large number of simu-
lations in order to accurately estimate the payoff for each agent strategy in a strategy
combination. Note that since it is possible that multiple copies of the same strategy may
appear in a strategy combination, when estimating the payoff associated with some strat-
egy, we compute the average payoff for all agents using this strategy, and let the average
payoff be the estimated payoff of this strategy.

Also note that when performing game-theoretic analysis, a game with some “strategy
ingredient” (a specification on how many of each strategy is used) may be presented in
many possible permutations, and these permutations will beviewed as different instances
in standard game-theoretic analysis. However, in this thesis, we will assume that market
games we studied are symmetric, meaning that the permutation of agents’ order will
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not be a factor in determining agents’ payoffs (e.g., for a game with 4 agents and 2
strategies, A and B, ABAB, AABB, and all permutations havingtwo As and two Bs will
be treated as the same game). This simple assumption can greatly reduce the number
of strategy combinations we have to consider. Nash’s famousresult stated that Nash
equilibrium exists for every normal form game [Nash, 1950].For symmetric games, this
result holds true as well. However, stronger results can be shown for symmetric games.
As a special extension, Nash also showed that symmetric Nashequilibrium exists for
finite symmetric games. The existence results in some other special classes of symmetric
games are discussed in detail by Chenget al. [2004a].

9.3 Designing Agent Strategies

The definition of agent strategy varies greatly in differentcontexts. In the context of
our market games, an agent strategy is defined as a time-dependent function that takes
market information and agent’s private information (this may include agent’s current re-
source holdings and agent’s preferences) as inputs, and outputs actions that should be
taken in the market.

To illustrate the idea, we will use a simple resource allocation problem as an example.
Let R be the set of resources shared by all agents. For each agent, let T be the set of
assigned tasks. LetPj be the current price for resourcej, Hj be this agent’s holding of
resourcej, Vi be this agent’s valuation on taski, andMi,j be the amount of resourcej
required for taski. Let P, H, V be the vectors ofPjs, Hjs andVis respectively, andM
be the matrix ofMi,js. By definition,P is the information obtained from the market, and
H, V, andM are agent’s private information. It should be noted that some information,
e.g.,P andH, may be time-dependent, therefore we add superscriptt to indicate price
and holding in time periodt.

In general, an agent’s bids may depend on the whole history ofmarket prices and bids,
however, to simplify the construction of the bidding strategy, we assume that each agent’s
bidding only depends on the current state. Each agent’s current state is composed of both
market and private information, and agent’s bids can be computed by feeding the above
information to a bidding function,F(Pt, Ht, V, M). If prices, task values, and resource
requirements are all real numbers, the bidding function is amapping fromR

|R|3|T|2 to
R

|R|.

In the following paragraphs, we describe two possible ways of designing and building
agent strategies.

Bidding on best packageThis bidding scheme first solves for the optimal package of
resources, givenPt andHt. The optimal package includes the amount of addi-
tional resources that are required, and how resources should be allocated to tasks.
With this optimal package, agent will then place large enough bids so that those
required resources can be bought. The problem of finding optimal packages can be
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represented mathematically as:

max
∑

i∈T

Vi xi −
∑

j∈R

P t
j yj (9.1)

s.t.
∑

i∈T

Mi,j xi ≤ H t
j + yj, ∀ j ∈ R

xi ∈ {0, 1}, ∀ i ∈ T

yj ≥ 0, integer, ∀ j ∈ R

wherexi indicates whether taski should be completed, andyj indicates how many
units of additional resourcej should be bought from the market (note that no sell-
ing is allowed in model (9.1), hence the constraintyj ≥ 0). As suggested by model
(9.1), the agent will simply place large bids to buyyj units of resourcesj. This bid-
ding strategy is common in practice, e.g., a version of this strategy is implemented
in Chenget al. [2005b] for a challenging travel shopping game. This strategy may
also bear different names, e.g., Greenwald and Boyan [2001]called such problems
completion problems. This similar strategy is also mentioned in Stoneet al.[2001].

Bidding on marginal values This bidding scheme first computes the marginal value of
each additional unit of available resources; the agent thenplaces bids that match
computed marginal values. When computing the marginal value of the resource, we
solve model (9.1) repeatedly. In the following paragraph, we usev(Pt, Ht, V, M)
to represent the optimal value obtained in model (9.1). Withthis we can define the
marginal value of thenth additional unit of resourcej, m(j, n), as:

m(j, n) = v(P̂
t
, Ht + n ej , V, M)− v(P̂

t
, Ht + (n− 1) ej, V, M)

whereP̂
t

is identical toPt exceptPt
j = ∞, andej is j th unit vector. In words,

the above formula says that the marginal value of thenth unit of resourcej is the
difference between the value of holding exactlyn units of additional resourcej
and the value of holding exactly(n − 1) units of additional resourcej. The idea
of bidding on marginal value has been widely used, for example, see Chenget al.
[2005b], Stoneet al. [2003] and Greenwald and Boyan [2004].

Note that so far we have assumed thatPt can be directly obtained from the market.
However, because of the dynamics of the market mechanisms, current prices usually are
not a very good indicator of final prices. This inaccuracy will seriously impact the bids
generated by above two schemes. This brings up the need for anaccurate prediction of
closing prices of auctions. Many possibilities have been investigated in several applica-
tions [Stoneet al., 2003; Wellmanet al., 2004; Zhanget al., 2003; MacKie-Masonet al.,
2004; Osepayshviliet al., 2005], and researchers have proposed various ways to improve
the quality of price predictions. In this thesis we will assume that price predictions are
exogenous and will be provided by a black box.
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9.4 Finding Nash Equilibrium in Empirical Games

Given a market scenario, after we have defined players, player strategies, and market
mechanisms to use, we can obtain the payoff matrix characterizing this market scenario
by executing sufficient number of market game simulations. The next step in the analysis
is to compute “solutions” for the market game, i.e., identifying NEs given the payoff
matrix.

Significant progress has been made in recent years on the computation of NEs and
also associated computational complexity [Conitzer and Sandholm, 2003; Fabrikantet
al., 2004; Papadimitriou and Roughgarden, 2005]. In general, the algorithms for com-
puting NEs in a game can be classified into two major categories, the ones that find a
sample NE, and the ones that find most (if not all) NEs. Whenever possible, we would
prefer methods that can give us as many NEs as possible.

One major issue in NE computation is the exponential growth of the size of the game.
Even the simplestn-player game, the one where each player makes a binary decision,
requiresn2n values to represent. As demonstrated in Part I, for many practical cases, even
storing or loading the game is not possible (e.g., the computational example discussed in
Chapter 5 has 54,000 players; even with identical payoff, this implies we have to deal
with at least254000 numbers!). In Part I, we proposed SFP as the algorithm for searching
for NEs in large games. SFP is started with no knowledge aboutthe payoff matrix,
and a particular payoff value (for a strategy profile) is onlyevaluated if it is required
by some best reply subroutine. This search strategy avoids the need to have a complete
payoff matrix before we even begin searching for the NE in thegame, thus avoiding this
issue. In other words, although the search space is enormous, the search strategy we
use selects candidate strategies extremely carefully, with emphasis placed on the most
valuable strategy profiles.

Besides this approach, exploiting compact representationof games is also a promising
approach in dealing with exponential growth of the game. As discussed by Papadimitriou
and Roughgarden [2005], special structures in games, if exploited properly, can assist us
in more efficiently searching for NEs. Some particular structures, like symmetry, were
well-studied at very early stage of the development of the game theory. As pointed out by
some researchers [Papadimitriou and Roughgarden, 2005; Reeveset al., 2005], by simply
recognizing the symmetry, a game withn players andk strategies can be represented with

only k

(

n + k − 1
k − 1

)

numbers, great reduction compared tonkn numbers if we don’t

exploit symmetry. Other notable game structures include graphical games [Kearnset al.,
2001], congestion games [Rosenthal, 1973a,b], and local-effect games [Leyton-Brown
and Tennenholtz, 2003]. Each of these classes of games describes a particular application
domain with certain strong properties. If the scenario studied can be described by any of
these games, specialized algorithms that exploit respective structures of these classes of
games can greatly improve the efficiency of the solution searching process.

In the following chapters, the primary structure we are exploiting is the symmetry
of the game. However, in many cases, this reduction alone maynot be sufficient. In
those cases, we may want to approximate the solution of the game, by reducing either the
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number of players, or the number of strategies. Both ideas are aimed at reducing the size
of the game. The size of the game is incrementally reduced until it can be solved properly.
As we would expect, the NE found in these reduced games are usually an approximate
NE in the original games, i.e., anǫ-NE. Also, we must note that in the process of game
reduction, some NEs may also be eliminated. However, this isthe price we have to pay
in many cases if we want to solve the game.

All these related issues related to game reduction are discussed in Chapter 10, with
particular emphasis on the strategy-reduction technique.

9.5 Conclusion and Related Works

In this chapter we introduced a recently developed set of techniques (under the name
“empirical game-theoretic analysis”) that can be used for many purposes; in particular, for
designing agent strategies, and for designing market mechanisms. These two applications
interestingly capture two extremes in the spectrum of the market-based approaches. On
the one end, it’s individual agents who take environment as given, and try to reason the
optimal strategies against other agents (within that particular environment). On the other
end, it’s the market designer, who tries to select market mechanisms that optimize certain
performance measure it cares. These two applications closely relate to each other, since
modifications to market mechanisms will change agents’ behaviors, and the change in
agents’ behaviors must be taken into account by the market designer when proposing
new mechanisms.

Market mechanisms used in the real world applications usually evolve iteratively.
With some market mechanisms initially proposed for certainpurposes, agents (partici-
pants) then exploit any loophole they can find in order to maximize their own benefits,
designer then patches the flaws; this process may repeat for many iterations until the
whole system settles down to a stable condition. If there is any change to the environ-
ment (e.g., the introduction of new participants, the change to the problem parameters),
above adjusting process will repeat again until another stable condition is reached. The
merit of the “empirical game-theoretic analysis” is that instead of reacting to whathave
happened, we perform necessary analyses a priori, and propose policies targeted at what
would happen. Given a decentralized environment, “empirical game-theoretic analysis”
provides a way for us to perform computational experiments in order to validate our de-
sign. These analyses, if performed properly, can save us from having to make real-time
adjustments and could help us avoid making costly mistakes.

There are many recent works on the use of empirical game-theoretic approach on
both ends of the spectrum. For the design of market mechanisms, there are works by
Vorobeychiket al. [2006] and Chapter 11 of this thesis. For the analysis of agents’
strategic behavior and efficiency of the game, there are works done by Kiekintveldet al.
[2006] and Wellmanet al. [2006]. More details on the use of these techniques can be
seen in the example studied in Chapter 11.
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CHAPTER 10

Strategy Reduction by Iteratedδ-Dominance

10.1 Introduction

As discussed in Section 4.1, finding a NE in a game of realisticsize is difficult. Find-
ing all NEs will be even more difficult, and is only possible infairly small games (e.g.,
even for 5-player, 5-strategy games, it may take hours, and sometimes days, to solve).
However, whenever possible, we would strongly prefer solving for all Nash equilibria.

An immediate thought on how we can solve larger games, as discussed in Section 9.4,
is to approximate the game by reducing either the number of players or strategies consid-
ered. The idea of reducing the number of players is formalized by Wellmanet al.[2005a];
the application of this method to a specific market game is described in Wellmanet al.
[2005b]. In this chapter we focus on approaches for reducingthe number of strategies.

The idea is directly inspired by the iterative removal of strictly dominated strategies
[Luce and Raiffa, 1957; Farquharson, 1969; Moulin, 1979]. A(pure) strategy is strictly
dominated if we can find a mixed strategy that performs strictly better than this strategy
under all possible combinations of other players’ strategies. As a result, these removed
strategies cannot be part of any NE. Since the removal of somestrategies from an agent’s
strategy space may result in the removal of other strategiesfor other players, strict domi-
nance is usually executed iteratively, until no further pruning is possible. One nice prop-
erty of the process of iterative strict dominance is that anyNE in the reduced game is also
a NE in the original game.

A weaker version of strict dominance is to allow the pruning of strategies that perform
as well as the dominating mixed strategy. These weakly dominated strategies may be part
of some NEs in the original game, however, any NE in the reduced game is still a NE in
the original game. It should be noted that iterative weak dominance, unlike iterative strict
dominance, ispath dependent, meaning that the set of surviving strategies may depend
on the order of eliminations [Gilboaet al., 1990].

An even weaker version of the strict dominance is to allow thedominated strategy
to be better than the dominating mixed strategy by a fixed amount δ. This δ-dominated
strategy may be part of a NE, and a NE of the reduced game may notnecessary be a NE
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in the original game, however, it can be viewed as an approximate NE of the original
game. Like iterated weak dominance, iteratedδ-dominance is path dependent, and fur-
thermore, with every iteration executed, more error will beaccumulated. In this chapter,
we relate the execution of theδ-dominance to the error bounds on NEs obtained in the
reduced game. Also, we propose a simple heuristic for determining the order of strategy
elimination. We also explore the benefit this method can bring to the empirical game
theoretic analysis.

This chapter is organized as follows. In Section 10.2, we formally define the proce-
dure of iteratedδ-dominance, and we discuss the error bounds on NEs in reducedgames.
In Section 10.3, we go into details on how one would implementiteratedδ-dominance
in practice, and we provide a simple implementation suggestion. In Section 10.4, we use
a challenging empirical game from the trading agent competition community to demon-
strate how our procedure can help in solving real games. Finally, in Section 10.5, we
conclude our work.

10.2 Iteratedδ-Dominance and Equilibrium Approxima-
tion

Before we go into details of the procedure, we first defineδ-dominancefor a pure
strategy. In the rest of this chapter, we follow the notationdefined in Chapter 2.

Definition 10.1 Let Si be the finite set of pure strategies for playeri, and∆(Si) be the
space of mixed strategies for playeri. We define strategys1

i ∈ Si as δ-dominated if
∃ σ1

i ∈ ∆(S1
i ), S1

i = Si \ {s1
i } such that:

δ + ui(σ
1
i , s−i) ≥ ui(s

1
i , s−i), ∀s−i ∈ S−i. (10.1)

In other words,s1
i is δ-dominated if we can find a mixed strategy (on the set of pure

strategies excludings1
i ) that, when compensated byδ, is at least as good ass1

i against
all pure opponent strategies. Note that unlike the standarddominance definition, for
each pure strategy (s1

i ) we check, we must exclude it from the domain of∆(·). This
modification is necessary because if we don’t excludes1

i , it will be δ-dominated by itself.

Because we introduceδ when eliminating strategies, eliminated strategies may infact
be part of some NE. As a result, the NE computed in the reduced game may only be an
approximate NE in the original game. In this section, we examine the effect of multiple
iterations ofδ-dominance has on the quality of obtained NEs, relative to the original
game. We first state how error is accumulated with one iteration of δ-dominance.

Proposition 10.2 LetΓn be the original game and letsn
i beδ-dominated inΓn. LetΓn+1

be the game obtained by removingsn
i from Γn. If any unilateral deviation by a player

from a mixed strategy can only result in at mostǫ improvement in its payoff, it is called
an ǫ-equilibrium. Ifσ is anǫ-equilibrium inΓn+1, then it is a(δ + ǫ)-equilibrium inΓn.
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Proof.

Sincesn
i is δ-dominated inΓn, ∃ σn

i ∈ ∆(Sn
i ), whereSn

i = Sn−1
i \ {sn

i }, such that:

δ + ui(σ
n
i , s−i) > ui(s

n
i , s−i), ∀s−i ∈ S−i. (10.2)

Also, sinceσ is ǫ-equilibrium inΓn+1 (which impliesσ ∈ ∆(Sn
i )), we have:

ǫ + ui(σi, σ−i) ≥ ui(si, σ−i), ∀si ∈ Sn
i . (10.3)

From (10.2), we can write:

δ + ui(σ
n
i , σ−i) > ui(s

n
i , σ−i), (10.4)

since (10.2) is true for alls−i ∈ S−i, arbitrary linear combination ons−i will also satisfy
the inequality.

Sinceσn
i andσi both belong to∆(Sn

i ), andσi is part of theǫ-NE in Γn+1, from (10.3),
we have:

ǫ + ui(σi, σ−i) ≥ ui(σ
n
i , σ−i), (10.5)

again, since (10.3) is true for anysi ∈ Sn
i , arbitrary linear combination onsi will still

satisfy the inequality.

From (10.4) and (10.5), we have:

(δ + ǫ) + ui(σi, σ−i) > ui(s
n
i , σ−i), (10.6)

from (10.6) we can see thatσ is indeed a(δ + ǫ)-NE in Γn.

We are now ready to define a theoretic upper bound on errors after several iterations
of δ-dominance.

Proposition 10.3 LetΓn be the game aftern iterations ofδ-dominance from the original
gameΓ0. We assume that one strategy is eliminated withδi in each iterationi. LetΓ0 be
the original game. Then anǫ-NE obtained inΓn is a (

∑n
i=1 δi + ǫ)-NE inΓ0.

Proof.

From Proposition 10.2, we know that the statement is true forn = 1. Assume that the
statement is true forn = n1, then theǫ-NE in Γn1 is (

∑n1

i=1 δi + ǫ)-NE in Γ0.

Now we would like to show that the statement is also true forn = (n1 + 1).

Note that sinceΓn1 is reduced fromΓ0 aftern1 iterations ofδ-dominance. The state-
ment forn = n1 should hold for any pair ofΓp andΓq, as long asΓp is obtained fromn1

iterations ofδ-dominance fromΓq.

Therefore from above claim, theǫ-NE in Γn1+1 is (
∑n1+1

i=2 δi + ǫ)-NE in Γ1. However,
from Proposition 10.2 we know that(

∑n1+1
i=2 δi + ǫ)-NE in Γ1 is (

∑n1+1
i=2 δi + δ1 + ǫ)-NE

in Γ0. Thus the statement is also true forn = (n1 + 1).

From math induction, the proposition is proved.
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10.3 Implementation of Iteratedδ-Dominance

Every time we use aδ to dominate certain strategy, we are adding errors to the so-
lution (from Proposition 10.2). Therefore, given a “budget” for errors we would like to
endure, we are interested in how to distribute it over several iterations ofδ-dominance
(one iteration is also possible), so that we can reduce the size of the game most.

If we define the original set of strategies and all its subsetsas nodes, then we can
pose following two questions: (1) what is the minimalδ that brings us from one node to
another node? (2) given a starting node and someδ, for all nodes with distances less than
δ from the starting node, which node is smallest in terms of setsize?

To answer above two questions, we must first address following fundamental ques-
tions:

• When will an arc exist? Obviously, according to the definition of nodes, for an
arc to exist between two nodes, it is necessary that one node is a proper subset of
another node, and this arc should originate from the node representing superset to
the node representing subset.

• What’s the definition of arc cost? An arc connecting two nodesrepresents the
action of performing a single iteration ofδ-dominance, and the starting node and
ending node represent the original set and the set after dominance respectively.
From this definition, the arc cost can be naturally defined as the minimalδ required
to complete this action.

From these discussions, we can see that the first question we raised earlier can be
posed as a shortest path problem in the graph. Similarly, thesecond question can also be
posed as a collection of shortest path problems.

Although shortest path problems are well-studied and can besolved efficiently, the
primary difficulty in our case is to come up with arc costs. As we will see later, computing
arc costs, although possible, is non-trivial. Since numberof nodes and number of arcs
grow exponentially with number of original strategies, it quickly becomes intractable to
come up with complete arc costs. Therefore, in realistic cases, solving for shortest path
can not be performed (again, due to difficulty in acquiring problem data).

In the following sections, we first formulate the arc cost computation problem as a
linear program, and use it as a sub-routine in developing a path finding heuristic.

10.3.1 Finding Minimal δ That Dominates Subset of Strategies

Definition 10.1 provides the definition forδ-dominance on a pure strategy. We will
now extend it so that we can defineδ-dominance on a set of strategies.

Definition 10.4 Let Si be the finite set of pure strategies for playeri, and ∆(Si) be
the space of mixed strategies for playeri. We define a set of strategiesT ⊂ Si are
δ-dominated if for eacht ∈ T , ∃ σ1

t,i ∈ ∆(S1
i ), S1

i = Si \ T such that:

δ + ui(σ
1
t,i , s−i) ≥ ui(t, s−i), ∀s−i ∈ S−i. (10.7)
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Following Definition 10.4, we can construct an optimizationproblem that identifies
theδ that dominates a set of strategiesT. The formulation is listed in Figure 10.1.

LP-A(S, T): min δ

s.t.

δ +
∑

s∈Si\T

xt(s) · u(s, s−i) ≥ u(t, s−i), ∀ t ∈ T, ∀s−i ∈ S−i

∑

s∈Si\T

xt(s) = 1, ∀ t ∈ T

0 ≤ xt(s) ≤ 1, ∀ t ∈ T, ∀s ∈ Si \ T

Figure 10.1: LP-A(S, T): formulation for findingδ that dominatesT, a set of strategies.

10.3.2 A Greedy Heuristic for Forming Domination Path

As mentioned at the beginning of Section 10.3, the major difficulty for finding shortest
path in the strategy reduction graph has been the computations of arc costs. Therefore
in practice, instead of computing all arc costs (which is computationally prohibitive), we
would like to find a simple rule for identifying promising arcs, and compute costs only
for these identified arc. Based on computed arc costs, we willthen decide strategies that
should be pruned.

In this section, we propose a simple iterative greedy heuristic for identifying the or-
der in which strategies should be pruned. At the beginning ofeach iteration, strictly
dominated strategies are first removed, then for each surviving strategy, theδ required
to eliminate it is computed using LP-A(·). The heuristic is greedy because it prunes the
strategy with leastδ in each iteration. This simple greedy heuristic is described in Fig-
ure 10.2. Two input parameters are required:S is the initial set of strategies, andΩ is our
“budget” for errors.

A simple variant that prunesk strategies in one iteration can be extended from Algo-
rithm 10.2. We use each strategy’s associatedδ to determinedk strategies with leastδs.
We then group them into a setK , and use LP-A(S, K ) to find the realδK that can prune
them within one iteration. The general heuristic is described in Figure 10.3. Of course,
if we actually computeδ for all subsets with sizek, K may not be the one with leastδ.
However, in order to identify such set, exponential number of enumerations is required,
and this is impractical. Also note that after setK is identified, the real error subtracted
from Ω will not be

∑

i∈K δ(k), instead, it will beδK computed using LP-A(·). This is
exactly why we introduce GREEDY-K: eliminating multiple strategies at once may incur
less error compared to eliminating them one by one. In the next section, we will introduce
a way to compute a tighter bound on error once we obtain a reduced game.
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ALGORITHM 10.2: GREEDY(S,Ω)

1: n← 1, Sn ← S
2: while Ω > 0 do
3: for s ∈ Sn

i do
4: δ(s)← LP-A(Sn, {s})
5: end for
6: t← arg mins∈Sn

i
δ(s)

7: d← δ(t)
8: if Ω ≥ d then
9: Ω← Ω− d

10: Sn+1
i ← Sn

i \ {t}, Sn+1 ← (Sn+1
i , S−i)

11: n← n + 1
12: else
13: Ω← 0
14: end if
15: end while
16: return Sn

Figure 10.2: Simple greedy heuristic, one strategy (the onewith leastδ) is pruned in each
iteration untilΩ is all used up.

10.3.3 Computing Tighter Error Bounds

We can reduce several players’ strategy spaces by running Algorithm 10.3 sequen-
tially. Let Γ be the original game, and letΓ′ be the reduced game. Let{Si} and{S′

i} be
the set of all players’ strategy spaces forΓ andΓ′ respectively. For each playeri, let Ωi

be the accumulated error actually used in GREEDY-K. The total error generated by these
reductions, according to Proposition 10.4, is then

∑

i Ωi. Given that both{Si} and{S′
i}

are known to us, we are interested in finding a tighter bound onthe error.

Let setM be the set of all NEs inΓ′. Then for eachσ ∈ M , it is an ǫσ-NE in Γ.
This ǫσ, by definition, is the maximal gain any player can get by unilaterally deviating
to the original strategy space. The overall error bound is the maximum of all NEs’ error
bounds, i.e.,

ǫ = max
σ∈M

max
i∈N

max
t∈Ti

{ui(t, σ−i)− ui(σi, σ−i)} , (10.8)

where setTi is defined asSi \ S′
i. To computeǫ with (10.8), we must first find all NEs

for Γ′. However, computing all NEs, as mentioned at the beginning of the chapter, is not
easy, and in many cases, not possible. Therefore, we would like to find a way to compute
ǫ without having to find all NEs a priori. If this is not possible, at least we would like to
find a way to compute a bound (as tight as possible) forǫ.

Sinceσ is a NE inΓ′, ui(σi, σ−i) ≥ ui(xi, σ−i), for all xi ∈ ∆(S′
i). For eachi ∈ N

andt ∈ Ti pair, we associate it to a mixed strategyxt
i, and we can obtain an upper bound
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ALGORITHM 10.3: GREEDY-K(S,Ω,k)

1: n← 1, Sn ← S
2: while Ω > 0 do
3: for s ∈ Sn

i do
4: δ(s)← LP-A(Sn, {s})
5: end for
6: K ← {}
7: for j = 1 to k do
8: tj ← arg mins∈Sn

i \K δ(s)
9: K ← {K , tj}

10: end for
11: δK ← LP-A(Sn, K)
12: if Ω ≥ δK then
13: Ω← Ω− δK

14: Sn+1
i ← Sn

i \ K , Sn+1 ← (Sn+1
i , S−i)

15: else
16: if Ω ≥ t1 then
17: Ω← Ω− δ(t1)
18: Sn+1

i ← Sn
i \ {t1}, Sn+1 ← (Sn+1

i , S−i)
19: else
20: Ω← 0
21: end if
22: end if
23: n← n + 1
24: end while
25: return Sn

Figure 10.3: Generalized greedy heuristic, which is similar to Algorithm 10.2, but prunes
k strategies in each iteration.

on (10.8):

max
i∈N

max
t∈Ti

max
σ∈M

{

ui(t, σ−i)− ui(x
t
i, σ−i)

}

≥ max
σ∈M

max
i∈N

max
t∈Ti

{ui(t, σ−i)− ui(σi, σ−i)} = ǫ (10.9)

Also note that since maxs−i∈S′

−i
[ui(t, s−i) − ui(x

t
i, s−i)] ≥ maxσ∈M [ui(t, σ−i) −

ui(x
t
i, σ−i)], we can further relax the bound onǫ, and totally remove setM from consid-

eration:

ǭ = max
i∈N

max
t∈Ti

max
s−i∈S′

−i

{

ui(t, s−i)− ui(x
t
i, s−i)

}

≥ max
σ∈M

max
i∈N

max
t∈Ti

{

ui(t, σ−i)− ui(x
t
i, σ−i)

}

≥ max
σ∈M

max
i∈N

max
t∈Ti

{ui(t, σ−i)− ui(σi, σ−i)} = ǫ (10.10)
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According to (10.10), we can find̄ǫ by solving the following optimization problem:

min ǭ (10.11)

s.t.

ǭ ≥ ui(t, s−i)−
∑

si∈S′

i

xt
i(si) · ui(si, s−i), ∀ i ∈ N , t ∈ Ti, s−i ∈ S′

−i

∑

si∈S′

i

xt
i(si) = 1, ∀ i ∈ N , t ∈ Ti

0 ≤ xt
i(si) ≤ 1, ∀ i ∈ N , t ∈ Ti, si ∈ S′

i,

Note that this formulation is very similar to LP-A(S, T) in Figure 10.1, which is con-
structed according to Definition 10.4. The major differenceis that LP-A(·) is defined for
a particular playeri, but (10.11) considers all players at once.

10.3.4 δ-Dominance for Symmetric Games

So far in this chapter, we have assumed that the procedure ofδ-dominance is used
to prune one strategy (or a set of strategies) from an agent’sstrategy space. However,
for a symmetric game, this assumption forces us to miss the opportunity for pruning
strategies from more than one player. In this section, we show that if we are given a
symmetric game, and it takesδs to prune strategys from one player’s strategy space, then
the accumulated error for prunings from all players’ strategy spaces is stillδs.

Proposition 10.5 Suppose we are given a symmetricN-player game,Γ, and each player’s
strategy space,Si, is by definition identical. Letδs be required to prunes from playeri’s
strategy space, and letΓ′ be the reduced game withs pruned from all players’ strategy
spaces. Then anǫ-NE inΓ′ is a (δs + ǫ)-equilibrium inΓ.

Proof.
From Definition 10.1, we know that∃ σ̂i ∈ ∆(Si), such that:

δs + ui(σ̂i , s−i) ≥ ui(s, s−i), ∀s−i ∈ S−i.

Let σ be anǫ-NE in Γ′. Then by multiplying eachσ−1(s−1) to the corresponding inequal-
ity above, we have:

δs + ui(σ̂i , σ−i) ≥ ui(s, σ−i)

Sinceσ is anǫ-NE in Γ′, we know thatǫ + ui(σi , σ−i) ≥ ui(σ̂i , σ−i). Therefore, we
have:

(δs + ǫ) + ui(σi , σ−i) ≥ (δs + ǫ) + ui(σ̂i , σ−i) ≥ ui(s, σ−i)

From definition,σ is (δs + ǫ)-equilibrium inΓ.

From Proposition 10.5, we know that for a symmetric game, once we identifyδs for
strategys, we can eliminates from all players’ strategy space, without incurring ad-
ditional errors (in other words, the total error we are adding to the equilibrium in the
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reduced game, withs removed from all players’ strategy spaces, is at mostδs). Ac-
cording to Proposition 10.5, we can modify Algorithms 10.2 and 10.3 respectively. For
Algorithm 10.2, we should modify line 10, so that{t} is pruned from all players’ strategy
spaces within the same iteration. For Algorithm 10.3, we should modify line 14 and line
18 similarly.

Exploiting symmetry is also beneficial in solving the optimization problem (10.11).
By exploiting symmetry, we can reduce the size of the problemby considering only one
i, instead of all players inN , since the inequalities will be identical for all players. Also,
for s−i, we only need to create inequalities for opponent strategy profiles with unique
strategy ingredients, as mentioned in Section 9.2.

10.4 Numerical Experiments

Following theoretical results from previous sections, we will now show how iterated
δ-dominance can be used as a tool in empirical strategic analysis.

As discussed earlier, the attempt to solve for all NEs quickly gets out of hand even
if we only consider games with moderate sizes. By usingδ-dominance, we would like
to more aggressively reduce players’ strategy spaces so that we can solve the reduced
game with some sacrifice to the quality of the solution. In this section, we use a reduced
two-player game [Wellmanet al., 2005b] as an example, and demonstrate how strategy
pruning can help in solving real games. We are also interested in seeing the difference be-
tween GREEDY and GREEDY-K empirically. In our experiments, we compared GREEDY

against GREEDY-K with k = 2. Since GREEDY can be viewed as GREEDY-K with
k = 1, in the following discussion, we use GREEDY-1 and GREEDY-2 to represent these
two cases.

10.4.1 A Brief Description on the Game

The game studied by Wellmanet al. [2005b] is a travel-shopping game [Wellmanet
al., 2003b] with eight players. Due to the exponential growth onthe number of strategy
profiles in number of players, Wellmanet al. [2005b] proposed to approximate the orig-
inal game through hierarchical reduction methods. From their definition, the two-player
reduction from the original game is obtained by creating two4-player groups, and let
strategy selection in each group be homogeneous. To be explicit, we assume that the
game is symmetric, and then we let player 1 through 4 play a chosen strategy, and player
5 though 8 play another chosen strategy. This is analogous toletting a leading player in
each group make decisions for all members in the group, whichcan then be thought of as
a two-player game.

It should be noted that in order to accurately estimate the expected payoff value for
each strategy profile, on average we will need to execute over20 simulations (per pro-
file). Given that the number of strategies in this game is 40, it is possible to evaluate all
possible profiles (total number of profiles for the 2-player reduction game is 840), how-
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ever, Wellmanet al. [2005b] choose to skip some of the less promising profiles in order
to make best use of limited computation time.

Due to this reason, when analyzing the game, we will skip any strategy if its inclusion
will result in some profiles having undefined payoffs (due to the lack of simulations). For
a partially explored payoff matrix, if such principle is followed, we should be able to
identify multiple subsets of strategies that are maximal inthe sense that the inclusion of
any additional strategy will result in some unexplored profiles. In the following analysis,
we will only look at the largest such set (with 27 strategies).

10.4.2 Comparison of GREEDY-1 and GREEDY-2

In this section, we will start with the 27-strategy set, and apply GREEDY-1 and
GREEDY-2 on it. By testing both heuristics on this real case, we would like to answer
following two questions: (1) How much better is GREEDY-2 compared to GREEDY-1 in
terms of efficiency in pruning strategies? (2) Given a path ofstrategy pruning, a tight
bound can be found by using formulation in (10.11), how tightis it compared to the ac-
cumulated error? One related question is, how tight is the bound obtained by (10.11),
when compared to the real equilibrium error?

To answer the first question, we execute both GREEDY-1 and GREEDY-2with Ω =
200, and we track the progresses of both heuristics. The comparison can be seen in Fig-
ure 10.4, where the evolutions of number of strategies versus accumulatedδ are plotted
for both GREEDY-1 and GREEDY-2. As demonstrated by Figure 10.4, we can see that
given the sameδ consumption, GREEDY-2 eliminates more strategies than GREEDY-1.
This results shows that, for a strategy pair (A, B), whereδA andδB (δs required to domi-
nate A and B respectively) are the smallest two among standing δs, it is usually the case
thatδAB ≤ δA + δB (δ required to dominate A and B in the same iteration is smaller than
the sum ofδA andδB). Of course, sinceδAB ≥ δA(or δB), when trying to identify next
two strategies to be eliminated, it is usually wise to choosetwo strategies with similarδs.
It should be noted that although for this specific numeric case, the orders in which the
strategies are pruned are almost identical for both GREEDY-1 and GREEDY-2, in general
they can be arbitrarily different.

Next thing we are interested in is the error bounds with different tightness. The loosest
bound is the accumulated error used by the greedy heuristic.A tighter bound can be
computed by using (10.11), suppose we have already identified a set ofδ-dominated
strategies (either through GREEDY-K, or other heuristics). The tightest bound can be
found by looking at the symmetric NEs computed in the reducedgame, and for each such
NE, evaluating itsǫ if any player is allowed to deviate to the strategy in the original game.
Although this bound sounds like an exact bound, it is not, since we are computingǫ only
for the “symmetric NE”. The issue with computingǫ for each symmetric NE is again that
we have to solve all the NEs for games with various sizes. In many cases, GAMBIT , the
software tool we use, cannot finish it even given several daysof computation time. To
help GAMBIT solve these games, we can perturb the payoff matrix slightly, and hope this
slight perturbation can help us avoiding possible numeric difficulties that stop us from
solving the game.
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Figure 10.4: Evolutions of number of remaining strategies versus accumulatedδ.

The perturbation approach is used since the algorithm GAMBIT used in searching for
NEs in a two-player game is Lemke-Howson algorithm [Lemke and Howson, 1964], a
pivotal algorithm very similar to the Simplex method. Due tothe same reason as in the
Simplex method, Lemke-Howson algorithm would suffer from the numerical difficulties
if the problem is degenerate. Researchers in the linear programming community have
long suggested the use of random perturbation in resolving degeneracy and this has been
mentioned in the work by Lemke and Howson [1964]. Of course, perturbing the payoff
matrix may introduce some errors to the NEs found, however, if this method can indeed
help us solve the game we cannot solve before, it should be worthwhile (since our purpose
lies in obtaining an idea on the tightness of various bounds).

In our experiments, we use the following procedure to repeatedly try to solve a game
until it can be solved within a predetermined amount of time:

1. Given a gameΓ, we randomly perturb its payoff matrix by adding a value randomly
drawn fromU [0, P ]1 to eachui(s), for all i ∈ N and alls ∈ S (it should be noted
that in this step, we always apply perturbations to the original payoff matrix).

2. Solve the game with Lemke-Howson algorithm, wait forT seconds, if the game is
not solved, terminate the solver and go to Step 1; otherwise end the process.

The implementation of this process indeed resolved the numerical difficulties we have
had earlier. In our implementation, we letT = 25, and the maximal amount of time
spent in solving a game is135.7 minutes (325 instances are generated) for games with
18 strategies. With the 2-player game solved at different sizes, we can now provide a
complete summary on the behavior of the GREEDY heuristic. Different bounds for the

1U[a,b] is a uniform random variable in[a, b]
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reduced games generated by GREEDY-1 and GREEDY-2 are summarized in Table 10.1.
These relationships are also plotted in Figure 10.5. Note that for the 18-strategy game,
since only strictly dominated strategies are eliminated, the NEs found in it shouldn’t
contain any error (ǫmax should be 0), however, since we randomly perturb it in order to
solve for the NEs, minor errors are incurred.

|S| GREEDY-1 GREEDY-2 Tighter bound ǫmax

18 0 0 0 0.93
17 14 - 14.67 0
16 31 17.09 17.09 0
15 58 - 27.11 0
14 82 44.2 27.11 1.06
13 111 - 28.43 18.02
12 138 77.59 28.43 20.37
11 - 77.59 28.43 18.67
10 169 - 30.12 0
9 - 110.58 32.99 0
7 - 110.58 12.18 0
6 - 110.58 12.12 0
5 - 110.58 3.74 0
4 - 122.76 3.74 0
2 - 171.6 48.84 20.18

Table 10.1: Summary of various error bounds at each strategylevel.

10.5 Conclusion

The explosion of strategy space we encountered in real worldcan be handled by either
reducing the number of agents, or as stated in this chapter, by reducing the number of
each agent’s strategies. By combining these two types of reduction methods, we are able
to treat a fairly large empirical game, with 8 agents, and each agent with 40 strategies.
Any attempt to directly solve such game without exploiting symmetry and reasonable
reductions is hopeless. After applying various reduction techniques already investigated
in the literature, the game is reduced to a 2-player, 27-strategy game. However, to enable
the search for all NEs, we must slash some additional strategies systematically. The
methodology mentioned in this chapter provides a way to achieve this.

While computing all NEs is empirically infeasible even for a2-player game with over
14 strategies, we can apply the random perturbation technique frequently mentioned in
the literature and approximately solve the game. By comparing the bounds we computed
to the real error, we can see that the tighter bound we suggested in Section 10.3.3 indeed
provides a much closer bound on NE errors. This implies that once we obtain a list of
pruned strategies (which can be determined either by the greedy heuristic suggested here,
or any other approach), a much tighter bound can be found.
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CHAPTER 11

Task Allocation for Dynamic Information Processing
Environments: A Motivational Example

Designing market mechanisms for a complex environment is difficult. Firstly, the de-
signer has an infinite design space; secondly, even if the design space can be restricted, it
is not clear how to properly evaluate each design, since the value of each design inevitably
involves how each agent would react to it.

In Chapter 9, we have described a collection of techniques that can be used in ad-
dressing these issues. The ultimate goal of these tools is toscientifically analyze a given
scenario and propose a reasonable solution. Depending on who is using these tools, the
so-called “solution” may have different meanings. For participating agents, a “solution”
may be a suggestion about optimal strategy (in game-theoretic settings, a NE). For the
market designer, a “solution” is the market mechanism that optimizes certain perfor-
mance criterion, e.g., social welfare. In this chapter, we take the market designer’s posi-
tion, and we use a resource allocation problem in generic dynamic information processing
environments to demonstrate how important design decisions can be made by using the
tools suggested in Chapter 9.

This chapter is organized as follows. Section 11.1 presentsa brief introduction and
provides motivation. Section 11.2 describes the scenario we are interested in and also its
corresponding abstract model. In Section 11.3, we describeagent strategies we designed
for the scenario. Section 11.4 presents the setup of the computational experiment and
also related analyses. Finally in Section 11.5, we concludethe section with our remarks
on the methodology and the scenario.

11.1 Introduction

One important problem resistive of centralized control techniques is managing the
allocation of information-processing resources within a dynamic, knowledge-intensive
environment. Such resources (e.g., analysts, computational facilities, sensors and other
data collection assets) are typically distributed geographically, may be owned by different
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organizations (private and public), and may be subject to inter-operability constraints. In
practice, this leads to great inefficiencies, and an actual level of information processing
well below potential aggregate capacity. Advances in networking and inter-operation
standards promise to facilitate flexible allocation, but realizing the potential gains will
require a suitable global planning methodology for the taskallocation problem.

Our work evaluates the potential of applying market-based approaches to dynamic
task allocation problems in information-processing environments. In general, a task allo-
cation problem involves multiple independent decision makers (i.e., agents), where each
agent is assigned certain number of tasks and each task may have different resource re-
quirements and value associated with it. The problem is dynamic, meaning that besides
initially assigned tasks, agents may be given new tasks dynamically. The problem is also
decentralized, since this task-related information is by default known only to each agent
and each agent makes its decision independently (based on this information), aiming at
optimizing its own objective. As described in Chapter 8, these difficulties (decentral-
ized control and distributed information) are exactly the ones that can be best handled by
the market-based approach, and these characteristics motivate the study of market-base
approaches in this scenario.

11.2 Task Allocation Scenario

In the remainder of this chapter, we describe a generic task allocation problem, and
our investigation of a market game scenario addressing a particular configuration of this
generic problem. The model is specified abstractly, with no particular interpretation ap-
plied to tasks or resources. Intuitively, the tasks correspond to information-gathering or
processing assignments, and the resources to factors (e.g., human labor or expertise, com-
putation cycles, sensor operations, communication activities) that contribute to achieving
the tasks. The model generalizes a scenario we developed originally for the information-
collection domain [Chenget al., 2004b], incorporating the extension to include dynamic
tasks and task dependency.

In Figure 11.1 we can see a high-level graph illustrating this scenario. On the left-
hand side are agents, each endowed with certain number of tasks (which can be assigned
at the beginning of the planning horizon, or can be arriving dynamically later) where de-
tails on these tasks are assumed to be known only to the agent owning these tasks. On the
right-hand side are resources, categorized by resource types (e.g., computing capacity,
capital, and human resources) and time spans in which these resources are to be con-
sumed. In a centralized setting, these resources are allocated by a central planner. In a
decentralized setting, as in our case, the rights to use these resources should be exchanged
through a set of pre-defined market mechanisms. Details on the problem are described in
the next section.
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Figure 11.1: A high-level illustration on task allocation problem in a decentralized set-
ting. Agents on the left-hand side are assigned certain tasks independently, and required
resources must be obtained through the corresponding exchanges.

11.2.1 Dynamic Task Allocation Problem

In the dynamic task allocation problem, each ofN agents may accrue value by per-
forming its assignedtasks. Agenti is initially assigned a set ofTi tasks (we refer to tasks
assigned initially asstatic tasks). Agents operate over aplanning horizonof H discrete
time periods, after which the scenario terminates. During each of theseH time periods,
dynamic tasks may arrive randomly according to a fixed distribution. To finish a task we
need to determine a period which is not later than the supplied deadline, and we obtain
the rights to use requiredresourcesin that specific period. Also, the completion of a task
may require some task to be finished first. In general a task maydepend on multiple
tasks, however, in the case we study, we assume each task depends on at most one task.

In Section 9.3 we have introduced a simple resource allocation scenario for the pur-
pose of introducing several frequently used agent design principles. The scenario studied
here is more complicated because some tasks arrive dynamically, all tasks are defined
with deadlines, and a task may depend on some other task. Before we go into the detail
of the problem, we first introduce important parameters thatcharacterize a task in the
scenario studied here:

ID A uniquely identifying number.

Priority The value of the task, in monetary units.

Duration The length of the task, in number of time units.

Deadline A time slot index indicating the latest time period when thistask should be
finished.
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Required resourcesA collection of types and quantities of the resources necessary in
finishing the task.

DependenciesThe ID of the task this task depends on (it is possible for a task to be
independent).

A task may be started in any time period after the completion of the task it depends on
(if any), and must be completed at or before the given deadline (if we choose to finish it).
Also, the agent must possess the required resources for the duration of task execution.

The major challenges of this problem are the dynamic arrivalof tasks and the alloca-
tion of resources in a decentralized manner. Since some tasks are assigned dynamically,
we must incorporate those tasks in the state space describing the problem, thus quickly
exploding the state space. Added to this difficulty is the decentralized way of allocat-
ing resources; in most cases, this implies that the exact resources that will be assigned
to this agent will depend on other agents’ actions. In this chapter, we are interested in
designing market mechanisms and agent strategies that are capable of handling these two
challenges.

11.2.2 Market Structure

In this section, we would like to propose a design for the market mechanisms to
be used in our scenario. We can build the market incrementally by starting with the
case where each agent is only assigned static tasks. In this scenario, the most promising
candidates are ascending auctions and sealed-bid auctions. As argued by many authors
[Cramton, 1998; Ausubel and Milgrom, 2002], in cases where collusion is not a major
concern, ascending auctions are more favorable since they are more practical and are
able to provide more information to the participants through iterative bidding process.
Chenget al. [2004b] demonstrate the use of simultaneous ascending auctions (SAAs)
in solving static task allocation problems. In this setting, for the rights of using each
type of resourcei in each time periodj, an ascending auction is established. Usually, an
ascending auction closes if there is no bidding activity fora while. The planning horizon
will not begin until all auctions close. To simplify the implementation, we assume that
each ascending auction will open for a fixed amount of time (which is sufficiently long
for agents to finish reasonable number of bidding iterations), after which it will close,
and all agents can begin planning their own tasks.

When bidding in each SAA, agents may offer to buy various quantities at various
prices. The auction enforces a “beat-the-quote” (BTQ) rule, which dictates that admis-
sible bids must offer to increase or maintain the number of units the agent would be
winning at the currently prevailing price, orprice quote. This BTQ rule is sufficient
to ensure that prices only increase, hence the term “ascending auction”. At the end of
the designated bidding interval, the auction closes, allocates its available units to the top
bidders (breaking ties arbitrarily), and charges all winners with the price offered by the
lowest winning bid. At closing, all bids (fulfilled or not) are removed from the auctions’
order books. If there are unsold units (which implies that the closing price for this auction
would be zero), these units are removed from the system.
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In the case where agents are assigned both static and dynamictasks, using only SAAs
is no longer sufficient. This is because all resources an agent obtained were based on
the requirement of only static tasks (plus some expectationon the arrival of dynamic
tasks); when a dynamic task indeed arrives after the planning horizon begins, the hold-
ings of resources in most cases may not meet the requirementsof the newly arrived tasks.
Therefore, we should provide some market mechanisms for resource exchange after the
planning horizon begins, so that agents can exchange resources if incoming dynamic
tasks change their plans. Unlike first phase of bidding, in which agents are bidding for
resources owned by an auctioneer (through SAAs), the secondphase of bidding involves
the exchange of resources among agents, thus each agent may be a buyer and a seller at
the same time. The most popular market mechanism for this kind of purpose is contin-
uous double auctions (CDAs) [Friedman and Rust, 1993]. Thistype of auction is both
“double” and “continuous” since all participating agents can be both buyers and sellers
at the same time, and auctions are cleared continuously as soon as a match is found.

Implementation-wise, this two-phase bidding process can be seen in Figure 11.2. For
each (resource-type, time-period) pair, an ascending auction is set up in the first phase
(i.e., the preparation phase), SAAs operate until the indicated time line, close, convert to
CDAs, and reopen at the beginning of the horizon. A CDA accepts buy or sell offers from
any agent, and whenever a buy bid is received that is compatible with an existing sell bid
(or vice versa), the offers transact immediately, transferring the corresponding quantity
of the goods (right to use the resource in the time period), aswell as money balances.
Offers that do not match existing bids are retained in the auction’s order book, until they
subsequently transact with new bids, or are replaced or removed by the original bidder.

CDA
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... H
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Figure 11.2: Two-phase markets. SAAs are used for the “preparation phase” where each
agent drafts its initial plan. After the “planning phase” begins, all SAAs are converted to
CDA. The planning is “online”, therefore agents will receive dynamic task information,
market updates, and have to submit task commitments as time progresses.

Note that the problem isonline, meaning that the agents must commit decisions se-
quentially. In particular, they must determine their use ofresources in periodj before
time periodj begins. As a result, all auctions related to time periodj should close right
before time periodj. Also, if an agent wants to commit the execution of certain task
in time periodj, they must make the commitment before time periodj. It is agent’s
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responsibility to ensure that all requirements (includingboth resources and dependency
requirements) for the task are met before submitting the commitment. In our case study,
we assume that commitment cannot be retracted once submitted. For any commitment
fails to exercise, this agent will be penalized.

As described in Section 9.2, we implement these markets using the AB3D market
game system. The specification of this two-phase auction in AB3D auction scripting lan-
guage is presented in Figure 11.3. The script begins with a series of assignment (set)
statements, initializing parameters controlling the auction’s bidding and clearing poli-
cies.1 Together, these specify a form of ascending auction. The rest of the script com-
prises a set of rules (employing thewhen construct), specifying the flow of control by
defining actions to be taken conditional on parenthesized conditions becoming true. In
this case, all conditions are temporal predicates, in one case also contingent on receipt of
a valid bid. Times are specified in milliseconds (e.g., 120000 represents two minutes),
and built-in variables such astime, gameStartTime, andlastQuoteTime repre-
sent time points maintained by the auction state and exposedto the script interpretation
engine. Note in particular that two minutes after game start, the third rule is executed,
clearing the ascending the auction and modifying the auction parameters in order to set
up a CDA policy for the remainder of operation. The CDA closesat the start of the period
corresponding to the slot index of its associated resource.

11.3 Agent Strategy

There are several important components in designing agent strategies for this sce-
nario: (1) collecting latest information, (2) deciding resource-bidding strategies for both
SAAs and CDAs, and (3) finding task committing policies. No matter how we design the
agent strategies, these components must be included. Basedon these requirements, we
put in place the following skeleton for designing agent strategies:

1. Setup: Obtain problem-related information from the game server (e.g., number of
planning periods, number of resources, and length of marketphases).

2. Update: Update transactions and price-quote information from the open auctions.
Update dynamic task arrivals from the system.

3. Compute Commitment Bundle: As already discussed, the commitment for ex-
ecuting a task in periodj must be submitted no later than the beginning of the
committed period. However, we don’t want to submit the commitment too early,
either, because when possible, we always want to make our decisions based on lat-
est information. Therefore, a task commitment plan will only be computed if the
time remaining in the current period is below a specified threshold. For the same
reason, we will send in commitments incrementally. Only commitments that are
scheduled in the next period will be sent in.

1Several of these are described in a paper about the AB3D scripting language [Lochner and Wellman,
2004]; further documentation is available athttp://ai.eecs.umich.edu/AB3D/.

99



defAuction twoPhase {
set auction bid language pq
set sellerIDs SELLER ID
set buyerIDs BUYER ID
set bid btq 1
set bid btq strict 0
set bid btq delta 1
set matching fn uniform
set pricing k 0
set bid dominance buy none
set bid dominance sell none
when (time = gameStartTime + 5000)
{quote}

when (time = lastQuoteTime + 20000)
{quote}

when (time = gameStartTime + 120000)
{clear;
set sellerIDs BUYER ID;
set matching fn earliest;
set bid btq 0;
flushBids; quote}

when (time ≥ gameStartTime + 120000
and validBid)

{clear; quote}
when (time = gameStartTime + 120000 + slotIndex * 120000)
{close}

}

Figure 11.3: AB3D specification of a resource auction. The third and fourth rules (when
clauses) trigger the change from ascending auction to CDA aftermarket.

4. Compute Bids: Compute and submit bids for active auctions.

5. Repeat: If end of horizon not yet reached, go to Step 2.

The first two items are simple bookkeeping steps, where the agent apprises itself of the
current game state. The substance of the agent’s strategy lies in how it determines its task
commitment plan, and how it bids in resource auctions based on that plan. We defined
two specific strategy variations. The first is a straightforward greedy strategy, which is
easy to compute but appeals to numerous and unrealistic simplifying assumptions. The
second employs the marginal-value based strategy as described in Section 9.3, which
improves decision quality at the expense of more complex computation.

11.3.1 Greedy Strategy

In the simplest strategy we consider, the agent computes thepotential gaineach task
brings in, calculated by summing the value of this task and the potential gains of all
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its dependent tasks2. The agent then sorts tasks according to the potential gains, starting
from the greatest. For each task considered, it determines the desirable committing period
that minimizes anticipated cost of resources. A committingperiod is feasible if it is before
or at the task’s deadline, and after the scheduled commitment of task on which it depends
(note that if the task we considered does not depend on any task, the earliest time we
can commit it is the first period). The anticipated cost of a particular resource at a given
time slot is its current ask price (the part of the price quoteindicating the price to buy)
at auction, or zero if the agent currently holds the resourceand has not committed it to a
previously considered task.

To determine the offer price for a particular unit of resource, the agent calculates its
value for the task using the resource, subtracting the ask prices of resources that it needs
to procure. It then divides this surplus among the resources, offering at the prevailing ask
price plus the associated fraction of surplus. Agents placeminimal buy offers even for
resources that they have no current use for, anticipating the possibility of dynamic task
arrivals or resale opportunities.

The bidding policy for buy offers is basically the same during the first (SAA) and
second (CDA) phases. In the preparation phase it recalculates bids upon receiving new
price quotes, adjusting if necessary to satisfy the BTQ rule. In the planning phase, it
reconsiders bids continuously, and does not need to performany BTQ adjustments.

In the preparation phase, the agent cannot sell any resources. In the planning phase,
it offers to sell any resources from its holdings that it doesnot project to use, based on
the task planning process described above. It places sell offers at a predetermined reserve
price.

Finally, the agent determines its commitment bundles basedon the most recent cal-
culated task performance decisions, just prior to the startof each period. Once a task
is committed, the resource holdings will be adjusted accordingly to reflect the usage of
resources.

11.3.2 Marginal-Value Bidding Strategy

Marginal-value bidding strategy introduced here is very similar to the one described
in Section 9.3, except that we also have to include the task committing periods in the
completion problems we solve. The modified completion problem is presented in (11.1),
with following notation.Q andR are the set of periods and the set of resources respec-
tively. Ts andTd represent the set of static tasks and the set of dynamic tasks. For each
taskt, Mt,r is the amount of resource typer required,Dt is the deadline,vt is the value,
andEt is the parent task it depends on. LetEt = 0 if task t doesn’t have a parent. The
auction is identified by the pair(r, q), with r ∈ R, andq ∈ Q. For each pair(r, q), letHr,q

be agent’s holding for goods in(r, q), andPr,q be the current asking price. The decision
variables arebr,q andxt,q. br,q represents units of(r, q) bought.xt,q is binary and equals

2If we define nodes as tasks, and use the task dependencies to connect these nodes to a tree, thepotential
gainat a node is just the sum of this task’s value and all child nodes’ potential gain.
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1 if taskt is scheduled in periodp, 0 otherwise.

max
∑

t∈Ts

S
Td

vt ·
∑

q∈Q

xt,q −
∑

r∈R,q∈Q

br,q · Pr,q (11.1)

s.t.
∑

q∈Q

xt,q ≤ 1 , ∀ t ∈ Ts

⋃

Td

∑

q∈Q

xt,q · q ≤ Dt , ∀ t ∈ Ts

⋃

Td

∑

t∈Ts

S
Td

xt,q ·Mt,r ≤ Hr,q + br,q , ∀ r ∈ R, q ∈ Q

q
∑

i=1

xt,i ≤

q−1
∑

i=0

xEt,i , ∀ t ∈ Ts

⋃

Td , q ∈ Q

In this strategy, agent’s bidding behavior is divided into two phases, just as indicated in
Figure 11.2. In both preparing phase and planning phase, theagent bids according to the
marginal values computed using (11.1) as subproblem. The marginal values are computed
similarly as described in Section 9.3: The(+n) marginal value of goods(r, q) = the value
with EXACTLY (Hr,q + n) goods(r, q) − the value with EXACTLY(Hr,q + n − 1)
goods(r, q), whereHr,q indicates the current holding of goods(r, q). Similarly, one can
compute the(−n) marginal value.

The difference between these two phases is that in CDA, sinceat most one unit of
resource is guaranteed at the current asking price, we have no idea about the cost of two
or more units of resources. As a result, when solving (11.1) in the planning phase,br,q

is assumed to take only binary value. A consequence of this isthat during the planning
phase, we only need to compute the(+1) and(−1) marginal values. Another important
difference between these two periods is that task commitments, as represented byxt,q,
are only submitted during the planning phase. As a result, insome later time periods
in the planning phase, some tasks may already been committedto some earlier periods;
therefore, when solving (11.1) with committed tasks, we have to fix the corresponding
xt,q to 1 or 0 depending on whether taskt has been committed or not.

If marginal values are used as bidding prices, it’s possiblethat for some goods, the
buying price (i.e.(+1) marginal value) might be higher than the selling price (i.e.(−1)
marginal value)3. Since the type of auction used in the second phase is CDA, such bids
with buying price higher than selling price will be transacted immediately. This type of
behavior is undesirable from both agent’s and market designer’s point of view. For the
agent, failing to put bids into action implies that it is giving up chance of getting more
value. And for the market designer, with a collection of agents failing to participate in

3It might not be straightforward why the marginal values for asingle goods may be increasing, given
that agent’s value is obtained through the fulfillments of tasks. The reason for this to happen in our case is
the dependency of tasks. To illustrate this, suppose we onlyhave one type of resource, and two tasks, task
A and task B. Let task B depend on task A and have higher value. Suppose both task A and task B request
one unit of resource, then the marginal value of the second unit will be higher than that of the first unit,
because task A (which has lesser value) must be finished first.
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the trading every once in a while implies the deterioration of the market efficiency. To
counter this issue, we will introduce shading into agent’s bidding process.

When trying to come up with the bid for each individual auction, we will check if
we have buying price higher than selling price. If this is notthe case, the bid will be
submitted without modification. However, if the buying price is higher than the selling
price, we will shade down the buying price and increase the selling price so that modified
selling price is higher than the buying price. Since there are many possible ways of
designing shading schemes and there is no compelling argument which method should
prevail, we will just use the simplest scheme, described as follows. In Figure 11.4, we
assume that we are about to submit two bids, one for buying,(bi, +1), and one for selling,
(si,−1), wherebi, si stand for the original buy and sell princes, andb

′

i, s
′

i stands for the
modified prices. The tuple(p, q) is the bid string wherep is price andq is quantity.
Positive quantity stands for buying while negative quantity stands for selling.δ andβ are
the user-specified constants. In our experiments, we useδ = 0.5 andβ = 1.

if bi ≤ si

submit (bi, +1), (si,−1)
else

s
′

i
= δ(bi − si)

b
′

i
= s

′

i
− β

submit (b
′

i
, +1), (s

′

i
,−1)

end if

Figure 11.4: Simple shading procedure for the marginal value strategy.

The commitment package will only be computed when it is within 20 seconds to the
next period (remember, the length of a period is 120 seconds). This limitation is used
here because we believe that the agent will make better commitment decision with more
information.

11.4 Numerical Experiments

11.4.1 Setup

Numerical data used in our experiment is defined as followed:

• Time periods: 5 (2 minutes per period)

• Number of agents: 4

• Number of resources: 4

• Capacity of each resource: 4

• Number of static tasks: 6
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• Number of dynamic tasks: uniformly distributed between 4 and 8.

• Task attributes:

– ID: a unique sequential number that identifies the task.

– Arrival time: for static tasks, this attribute is meaningless; for dynamic tasks,
it’s distributed uniformly between 2 and 5.

– Value: for each static task, the value uniformly distributed between 100 and
1000; for each dynamic task, the value uniformly distributed between 100 and
1200.

– Deadline: uniformly distributed between 2 and 5.

– Resource requirement: each resource is required with probability 0.5.

– Task dependency:

∗ For static tasks: it will depend on task between 1 and (ID-1) with proba-
bility 0.5.

∗ For dynamic tasks: a static task will be required with probability 0.5.

– Duration: fixed to one period for simplicity.

The market environment is provided byAB3D, a configurable market environment. The
auction services and the communication protocols are also provided byAB3D.

11.4.2 Dynamic Task Allocation Scenario in GDL

In Section 9.2, the GDL is introduced as a general language for describing market
games. For completeness, we include important components of this scenario, written in
GDL, at the end of Appendix B. For detailed lists, please refer to Figure B.1, B.2 and
B.3.

11.4.3 Analysis and Discussion

In this section, we will present the result of our computational experiments. The
design of the experiments aims at answering following issues:

• How good is the marginal value bidder compared to the simple bidder?

• What is the value of second-phase auction (i.e., CDAs used inthe planning phase)?

• What is the benefits of shading for the marginal value bidders? Does shading actu-
ally result in more transactions?

To answer the above three questions, we must first introduce avariety of agent strate-
gies based on Section 11.3.1 and 11.3.2. Greedy strategy introduced in Section 11.3.1
is included in the strategy portfolio without additional modification. However, for the
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marginal-value strategy described in Section 11.3.2, we will create three variants out of
this basic framework. The first variant,MARG (w/ shading), is the most complete ver-
sion, with all the features as described in Section 11.3.2. The second variant,MARG
(w/o shading), is the marginal value strategy without the shading procedure described
in Figure 11.4, i.e., all bids generated from the marginal value computation routine are
submitted without modification. The third and the final variant, MARG (w/o CDA), is the
most crippled strategy version, since it skips bidding in the planning phase altogether. It
still updates dynamic task arrivals, and the commitments are also computed dynamically,
however, it assumes that bidding in the planning phase is notallowed.

With these agents strategies, we must also define relative scale of the market’s perfor-
mance against centralized planning. However, since the exact global solution is extremely
hard to obtain due to the dynamic nature of the problem, we will come up with upper and
lower bounds on the performance ratio (between market mechanism and global planning)
instead.

• Percentage versus static global sum:The static global sum is computed by col-
lecting holdings and task-related information from all agents, and assumes that all
dynamic tasks are treated as static tasks, meaning that theyare known to the planner
a priori. This measure will serve as the lower bound of the percentage versus real
expected global sum. This measure is very similar to the computation of the value
of perfect information in Section 3.5.3. In this measure, weremove the stochastic-
ity and also the decentralization from the problem. The mathematical formulation
of this problem is just (11.1), withbr,q fixed to 0, andTs andTd replaced by the set
that contains all agents’ static and dynamic tasks.

• Percentage versus rolling-horizon global sum:The rolling-horizon global sum
is computed by assuming that the solver knows the final combined holdings from
all agents. Also, all agents’ static tasks and “revealed” dynamic tasks up to current
period are assumed to be available. The rolling-horizon global solver will compute
the commitment plan period by period, with appropriate dynamic task information
(all dynamic tasks arriving beyond current period are treated as non-existent to the
solver). Note that as in the individual agent’s case, the global solver only commits
tasks that are due in the next period.

The results of the experiments, in terms of above measures, are summarized in Table
11.1.

Strategy
(%) v.s. static
global sum

(%) v.s. rolling-
horizon global sum

Number of
transactions

Greedy 50.19 64.1 78.2
MARG (w/o shading) 70.35 86.07 72.9
MARG (w/ shading) 77.41 93.09 82.8
MARG (w/o CDA) 71.41 85.99 53.6

Table 11.1: Performance comparison.
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With the results in Table 11.1, we can then answer the three questions raised earlier
in the section.

• From the result we can see that all versions of marginal-value-based agent strategies
outperform simple bidder. We are not claiming that marginalvalue bidder is the
best strategy for our problem. However, given that marginalvalues can be easily
obtained, in most cases it can be used as the first reasonable strategy.

• The value of the after market can be shown by comparing the performance between
MARG (w/o CDA) and MARG (w/ shading). In terms of the percentage versus
both static and rolling-horizon global sum, MARG (w/ shading) performs better
than MARG (w/o CDA) by around 8%. This 8% can be viewed as the benefit one
can get by reacting adaptively to the dynamic events.

• From Table 11.1 we can see the the introduction of bid shadingcauses 13% in-
crease in the number of transactions and around 8% increase in the system utility.
This can be explained by the complementarity in the resourcerequirements and
the dependency among tasks. The dependency among tasks results in sometimes
increasing marginal values. And the complementarity in theresource requirements
implies that if the agent constantly fails to send in bids because of self-transaction,
even if it does manages to get some of the goods it bids, it might turn out to be
worthless because other required resources cannot be purchased.

11.5 Conclusion

The main objective of this chapter is to explore the use of market mechanisms in a
highly decentralized scenario. As already discussed in previous chapters, market-based
approaches can be used in resolving difficulties that are originated from the decentral-
ized nature of the problem. As discussed in Wellmanet al. [2003a], the choice of market
mechanisms and agents’ strategic behaviors may result in solution inefficiencies. By con-
trolling our computational experiments properly, we can identify various possible reasons
that contribute to the efficiencies or the inefficiencies of the market-based approach.

As demonstrated in this chapter, for the dynamic task allocation problem studied, it is
important to create an after-market that allows agents to adjust their respective resource
holdings according to the latest received dynamic tasks. However, even with after-market
created, if an agent does not carefully check its bidding behavior in the specific market
mechanism, even a small glitch may cause significant loss in efficiencies.
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CHAPTER 12

Market-Based Approach: Conclusions and Future Work

The second part of this thesis is devoted to issues related tothe use of market mecha-
nisms in decentralized resource allocation problems. Chapter 9 focuses on various issues
related to the use market games in evaluating market mechanisms. Chapter 10 focuses on
aggressive strategy pruning technique that is useful in game-theoretic analysis. Finally,
Chapter 11 focuses on the analysis of the use of markets in solving decentralized resource
allocation problems.

12.1 Summary of Contributions

In Chapter 9, we gave an overview on a collection of tools one can use in analyzing the
performance of market mechanisms in market games. The first important tool discussed is
the Game Definition Language, which is part of the AB3D marketgaming platform. This
language allows us to use AB3D as a standard platform for defining and executing market
game simulations, thus eliminating one of the most time consuming parts of setting up
numerical experiments. Next in Chapter 10, we introduced anaggressive strategy pruning
technique. Although weaker than the usual strategy dominance concept, it is shown to
significantly reduce the size of the game without introducing significant errors to the
solution. With the help of this strategy pruning scheme, we can quickly obtain a reduced
game, solve it, and obtain a tight error bound on the solution. The development of tools of
this kind (also see Wellmanet al. [2005a]) can be used in helping researchers analyzing
large games empirically (for example, see Wellmanet al. [2006] and Kiekintveldet al.
[2006]).

Finally in Chapter 11, we studied a challenging dynamic taskallocation problem. By
modeling this problem as a market game, we can answer many qualitative and quantita-
tive questions empirically by executing numerical experiments.
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12.2 Future Work

The proposed future work follows the two trends studied in the second part of this the-
sis. On the study of game-reduction techniques, we are interested in carrying out a more
extensive study on the effectiveness of the strategy-pruning technique on a wide variety
of games, by using the game generator, GAMUT [Nudelmanet al., 2004]. We believe
this is the first step towards developing a class of more specialized game-reduction tech-
niques. Ultimately, we are interested in exploiting game structures other than symmetries.

For the market-based approach, we are interested in continuing the study of the dy-
namic task allocation problem. Our study of the particular scenario in Chapter 11 only
answers some qualitative and quantitative questions. To make the scenario more realis-
tic, we can introduce a wider variety of strategies, and perform a more extensive search
in terms of classes of mechanisms (one such example is studied in Vorobeychiket al.
[2006]). Ultimately, by building better game-estimators and game-solvers, which can all
be executed automatically, we are interested in building a set of tools that can greatly
reduce the labor required in testing and discovering market-based solutions, and discov-
ering insights in market and strategy designs.
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APPENDIX A

Adaptive Signal Re-timing

Adaptive signal re-timing in INTEGRATION-UM is an online cycle time and phase-
split optimization heuristic, as described in Wunderlich [1994]. The underlying theory
for this approach is based on Webster and Cobbe’s model [Webster and Cobbe, 1958].
Underlying analysis will not be explained in detail here; instead, the implementation of
the algorithm as embedded in INTEGRATION-UM is presented.

The automatic signal re-timing algorithm determines signal timing plans based on
current flows on the approaches1 leading to the signalized intersections. (In this appen-
dix we use the term “flow” to represent the volume of traffic on alink or approach.)
The re-timing algorithm in INTEGRATION-UM is invoked repeatedly at user-specified
intervals, and proceeds in three steps:

1. Estimating link flows: for each signalized intersection, the equivalent flow for
each link is estimated by combing average incoming flow and average size of the
standing queue. The following formula is used for this purpose:

va = fa + 4qa, (A.1)

whereva is the estimated flow on linka, fa is the exponentially smoothed average
flow on link a, andqa is the exponentially smoothed average size of the standing
queue on linka.

Both average incoming flow (fa) and average size of the standing queue (qa) of
link a are obtained by periodically performing the following exponential smoothing
updates:

fa := 0.75fa + 0.25fa
in (A.2)

qa := 0.9qa + 0.1q̂a, (A.3)

wherefa
in is the number of vehicles flowing into linka during the interval between

smoothing updates, and̂qa is the size of standing queue on linka during the same
interval.

1If a signal timing plan is used at more than one intersection within the traffic network, the approach is
defined as the set of links coming into these controlled intersections during the same phase.
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2. Computing critical values: based on the above flow data, the procedure will com-
pute a measure (i.e., critical value) that represents the relative congestion of each
link. By using this measure, the procedure then computes cycle length and the
allocation of green times.

For each linka leading to the intersections controlled by the signal timing plan,
a critical value (measure of congestion)ya is computed as the ratio between esti-
mated link flow and link’s saturation flow:

ya =
va

sa
, (A.4)

wheresa is link a’s saturation flow rate (as defined in the network topology defini-
tion).

Let the setAp consist of all the links that have the right of way during phase p of
the signal under consideration. The critical value for phase p is then the maximal
ya of all links in Ap:

yp = max

{

max
a∈Ap

{ya}, ymin

}

, (A.5)

whereymin is a predefined minimal critical value.

The combined critical value for the signal timing plan, denoted byY , is then the
sum of values ofyp over all its phases:

Y =
∑

p

yp. (A.6)

3. Computing cycle time and green time for each phase: the new cycle time for
each signal timing plan,Co, is computed from its corresponding critical value,Y ,
and the sum of lost time (i.e., yellow time) for all phases,L. ForY ≤ 0.95,

Co = max{min{
(1.5L + 5)

(1− Y )
, Cmax}, Cmin} (A.7)

Otherwise,Co = Cmax. Cmin andCmax are the specified minimal and maximal cycle
times, respectively.

After Co is obtained, the length of green time for all phases can be computed ac-
cordingly.gp, the length of green time assigned to phasep, is determined by

gp =
yp

Y
(Co − L). (A.8)
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APPENDIX B

Game Definition Language for Market Games

As discussed in Section 9.2, one of the important functionalities of the market gam-
ing platform is to generate common and agent-specific information. According to the
previous discussions, these information may be hierarchical and probabilistic. Therefore,
in order to effectively generate these information, it mustbe easy to specify hierarchical
structures and random variables.

Gam Definition Language (GDL) is mainly designed to meet these two requirements.
On top of these two requirements, GDL is also designed to makeinformation generation
more efficient. Also, GDL must be sophisticated enough to generate some complicated
features (e.g., the generation of random sequence and execution of simple arithmetics).
To meet all these design goals, and without complicating game design too much, we
choose to build GDL based on XML.

One of the major benefits of XML is its inherited ability in representing information
hierarchies. Based on XML, we can then realize most of the above mentioned design
goals by embedding commands in the XML tags, as illustrated as follows:

1. Tree structure generation.This type of task will generate results in a hierarchical
manner. The parser will export any tag it encounters, starting for the root node,
unless it belongs to specify to execute one of the following command. Usable
commands include “for”, “var”, “seeds”, “distribution”, “declare”, “endowment”,
which will be explained later.

2. Pattern-based value generation.This type of task will generate the text content
for a single element. A Java-style pattern tag is defined, anduser can use this tag
to perform simple arithmetic operations (+ - * /), string composition, and random
sequence generation. This task can be nested, i.e., we can have pattern-generated
value as the argument as a parent pattern.

B.1 Basic Parsing Rules

When a XML element is parsed, its content will be evaluated according to the follow-
ing rules:
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• If the content is a number, it will be exported directly.

• If the above condition fails, the parser will try to search the global variable hash by
using the content as key.

• If the above conditions fail, the parse will try to search thelocal variable hash by
using the content as key.

• If the above conditions fail, the parse will try to evaluate the content as an arithmetic
expression and return the value.

• A value -9999 will be exported if all of the above conditions fail.

For convenience, some commonly used values are inserted into a global hash by the
parser and can be accessed by the following key:

GAME ID Game ID.

GAME PATH The path to game-specific data.

AUCTION PATH The path to auction-related data.

GAME START TIME Game starting time, in milliseconds.

GAME END TIME Game ending time, in milliseconds.

SEED The global random seed, it’s initialized to use the game ID.

INDEX The index (absolute order) of auction or agent (depending onwhich file is
parsed). Only available in the file that specifies agent’s preference and the file
that specifies auctions used in the game.

AGENTID Current agent’s ID. Only available in the file that specifies agent’s prefer-
ence.

Besides these common keys, all parameters specified in the main game definition files
will also be hashed by their tag names and can be used.

B.2 Command Syntax and Examples

There are two ways of using GDL’s programming constructs. Ifwe want to export the
tag in the final output, we can insert a parameter calledtemplateinside the tag, and use
one of the following commands as the value. Or, if we just wantto execute the command
without outputting the tag, we can use a pair of special tags called<CMD>...</CMD>,
and include the command in the parameter “template” as well.The commands that are
supported by GDL are explained in detail as follows:
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for Used to repeatedly export all the children nodes until the condition on loop variable is
false. “for” can be used in an ordinary tag, where the tag, as well as all the children
tags will be exported. Or it can be used in special tag<CMD></CMD>, where the
command will be executed, but the tag will not be exported (asmentioned earlier).
Required parameters:

• var: The name of the loop variable.

• from: The starting value of the variable.

• to: The ending value of the variable.

Here is an example for an ordinary tag:

<someTAG from="1" to="2" var="X" template="for">
<ChildrenTags1>
<ChildrenTags1.1>...</ChildrenTags1.1>
<ChildrenTags1.2>...</ChildrenTags1.2>

</ChildrenTags1>
</someTAG>

The parsed result will be:

<someTAG>
<ChildrenTags1>
<ChildrenTags1.1>...</ChildrenTags1.1>
<ChildrenTags1.2>...</ChildrenTags1.2>

</ChildrenTags1>
<ChildrenTags1>
<ChildrenTags1.1>...</ChildrenTags1.1>
<ChildrenTags1.2>...</ChildrenTags1.2>

</ChildrenTags1>
</someTAG>

var Used to set the tag’s content as the value of the variable specified by parametervar.
For example, we can set a tag’s content to the value of the variable in the “for”
loop. Required parameters:

• var: The name of the variable whose value will be exported as content.

Example:

<someTAG from="1" to="2" var="X" template="for">
<ChildrenTags1 var="X" template="var" />
<ChildrenTags2>
<CMD from="1" to="2" var="Y" template="for">

<ChildrenTags2.1 var="Y" template="var" />
</CMD>

</ChildrenTags2>
</someTAG>
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The parsed result will be:

<someTAG>
<ChildrenTags1>1</ChildrenTags1>
<ChildrenTags2>
<ChildrenTags2.1>1</ChildrenTags2.1>
<ChildrenTags2.1>2</ChildrenTags2.1>

</ChildrenTags2>
<ChildrenTags1>2</ChildrenTags1>
<ChildrenTags2>
<ChildrenTags2.1>1</ChildrenTags2.1>
<ChildrenTags2.1>2</ChildrenTags2.1>

</ChildrenTags2>
</someTAG>

seedsUsed to specify the random seed that will be used in all the subsequent parsings.
Required parameters:

• type: The type of the seed.

Two types of seeds are available.

1. Use GAMEID only.

2. Use GAMEID and INDEX.

Example:

<CMD type="2" template="seeds" />

distribution Used to generate a value according to the distribution specified. Required
parameters:

• distribution: The name of the distribution.

Currently there is only one distribution implemented now (more distribution can be
included as needed).

• UNIFORM It takes two parameters, lower bound and higher bound. Note
that this distribution is actually the discrete uniform distribution.

Example:

<deadline distribution="UNIFORM" template="distribution">
<params>
<param index="1">1</param>
<param index="2">10</param>

</params>
</deadline>
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Parsed result:

<deadline>x</deadline>

Wherex is some discrete-uniform random number drawn between 1 and 10.

declare Used to declare a new entry in the local variable hash. We haveto specify
two children tags under “declare”:<NAME></NAME> and<VALUE></VALUE>.
Text enclosed by<NAME></NAME> is the name of the next entry in local variable
hash. Text (or number) enclosed by<VALUE></VALUE> is the value of this
variable. Note that the text (or number) enclose byNAME andVALUE can also be
generated by GDL commands. Also note that if a hash entry withthe same name
already exists, its value will be overwritten.

Example:

<CMD template="declare">
<NAME>newVariableEntry</NAME>
<VALUE distribution="UNIFORM" template="distribution">
<params>

<param index="1">10</param>
<param index="2">20</param>

</params>
</VALUE>

</CMD>

Above example will insertnewVariableEntry into local variable hash, with
value randomly drawn from a discrete uniform distribution between 10 and 20.

endowment Originally it is used to generate agent-specific endowment information. But
now it is used to generate any information that is game-specific and cannot be
generated by using above mechanism. This command will invoke an user-supplied
Java class (with predefined interface) and anything that is outputted will be included
under the current tag. Required parameters:

• type: The name of the user-defined Java class.

Example:

<someTAG type="some.user.class" template="endowment" />

Parsed result:

<someTAG>
whatever outputted by the object

</someTAG>
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pattern If we include a tag named<pattern></pattern>anywhere, it will be han-
dled in a special way. The idea for using such tag is to introduce a way such that
we can compose a composite expression or string by insertingvarious parameters
into a pattern. Required parameters:

• format: The Java-style formatting string.

• type: Can bestringor value, explained as follows.

There are two modes for “pattern”:

1. string The composite string, after parameters inserted will be as is, without
further post processing.
Example:

<DoSomePattern>
<pattern format="SOMETHING-\{0\}-\{1\}" type="string">
<arg index="0">X</arg>
<arg index="1">Y</arg>

</pattern>
</DoSomePattern>

Parsed result, suppose X=1, Y=2:

<DoSomePattern>SOMETHING-1-2</DoSomePattern>

2. valueThe composite string should be an arithmetic expression, its result will
be calculated and outputted.
Example:

<DoSomePattern>
<pattern format="\{0\}*6+\{1\}" type="value">
<arg index="0">X</arg>
<arg index="1">Y</arg>

</pattern>
</DoSomePattern>

Parsed result, suppose X=1, Y=2:

<DoSomePattern>8</DoSomePattern>

B.3 The Partial GDL Listings for the Dynamic Task Al-
location Problem

In the following three figures, we demonstrate how to use GDL in representing a
problem containing random variables. In particular, Figure B.3 presents how to generate
random number of tasks, and assign random deadlines to tasksgenerated.
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<game>
<gameLen>840000</gameLen>
<totalAgents>5</totalAgents>
<phaseOneEndTime>120000</phaseOneEndTime>
<numResources>4</numResources>
<numSlots>5</numSlots>
<msPerSlot>120000</msPerSlot>
<whenDynamicTaskComeIn>2</whenDynamicTaskComeIn>
<numStaticTasks>6</numStaticTasks>
<minDynamicTaskNumber>4</minDynamicTaskNumber>
<maxDynamicTaskNumber>8</maxDynamicTaskNumber>
<minStaticTaskValue>100</minStaticTaskValue>
<maxStaticTaskValue>1000</maxStaticTaskValue>
<minDynamicTaskValue>100</minDynamicTaskValue>
<maxDynamicTaskValue>1200</maxDynamicTaskValue>
<resourcesCap>4</resourcesCap>

</game>

Figure B.1: This is the main game file that defines important game parameters mentioned
in Section 11.4.1.
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<getGameParams>
<agent var="AGENTID" template="var"/>
<taskPreferences>
<CMD type="2" template="seeds"/>
<list from="1" to="numStaticTasks" var="X" template="for">

<taskPrefTuple>
<task var="X" template="var"/>
<value distribution="UNIFORM" template="distribution">
<params>

<param index="1">minStaticTaskValue</param>
<param index="2">maxStaticTaskValue</param>

</params>
</value>
<deadline distribution="UNIFORM" template="distribution">
<params>

<param index="1">2</param><param index="2">numSlots</param>
</params>

</deadline>
<requiredResources>
<CMD from="1" to="numResources" var="Y" template="for">

<resourceTuple>
<type var="Y" template="var"/>
<quantity distribution="UNIFORM" template="distribution">
<params>

<param index="1">0</param><param index="2">1</param>
</params>

</quantity>
</resourceTuple>

</CMD>
</requiredResources>
<requiredTasks>
<taskTuple>

<task distribution="UNIFORM" template="distribution">
<params>
<param index="1">1</param>
<param index="2">

<pattern format="0-1" type="value"><arg index="0">X</arg></pattern>
</param>

</params>
</task>
<required distribution="UNIFORM" template="distribution">

<params>
<param index="1">0</param><param index="2">1</param>

</params>
</required>

</taskTuple>
</requiredTasks>

</taskPrefTuple>
</list>
</taskPreferences>

</getGameParams>

Figure B.2: This figure lists the GDL used in defining agent’s preference.
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<getEvents>
<agent var="AGENTID" template="var"/>
<CMD template="declare">

<NAME>numDynamicTasks</NAME>
<VALUE distribution="UNIFORM" template="distribution">

<params>
<param index="1">minDynamicTaskNumber</param>
<param index="2">maxDynamicTaskNumber</param>

</params>
</VALUE>

</CMD>
<taskPreferences>

<CMD type="2" template="seeds"/>
<list from="1" to="numDynamicTasks" var="X" template="for">

<taskPrefTuple>
<task>

<pattern format="{0}+{1}" type="value">
<arg index="0">numStaticTasks</arg><arg index="1">X</arg>

</pattern>
</task>
<CMD template="declare">

<NAME>taskArrivalSlot</NAME>
<VALUE distribution="UNIFORM" template="distribution">

<params>
<param index="1">whenDynamicTaskComeIn</param>
<param index="2"><pattern format="{0}-{1}" type="value">

<arg index="0">numSlots</arg><arg index="1">1</arg>
</pattern></param>

</params>
</VALUE>

</CMD>
<time>

<pattern format="{0}+{1}+{2}*{3}" type="value">
<arg index="0">GAME START TIME</arg>
<arg index="1">phaseOneEndTime</arg>
<arg index="2">taskArrivalSlot</arg>
<arg index="3">msPerSlot</arg>

</pattern>
</time>
<value distribution="UNIFORM" template="distribution">

<params>
<param index="1">minDynamicTaskValue</param>
<param index="2">maxDynamicTaskValue</param>

</params>
</value>
<deadline distribution="UNIFORM" template="distribution">

<params>
<param index="1">taskArrivalSlot</param>
<param index="2">numSlots</param>

</params>
</deadline>
...

</taskPrefTuple>
</list>

</taskPreferences>
</getEvents>

Figure B.3: This figure lists the GDL used in defining dynamically arriving tasks. Note
that the section that defines task’s parameter is identical to the fragment in Figure B.2,
therefore it is neglected here.
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