Game-Theoretic Approaches for Complex Systems
Optimization

by

Shih-Fen Cheng

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Industrial and Operations Engineering)
in The University of Michigan
2006

Doctoral Committee:
Professor Robert L. Smith, Co-Chair
Professor Michael P. Wellman, Co-Chair
Associate Professor Satinder Singh Baveja
Associate Professor Marina A. Epelman

© Shih-Fen Cheng2006
All Rights Reserved

To my parents, my parents-in-law, and my wife,
for their unconditional love and support.

ACKNOWLEDGMENTS

This thesis includes joint work with Robert Smith, MichaeéMhan, Marina Epel-
man, Daniel Reaume, Archis Ghate, Daniel Reeves, Kevin heGHlake Nicholson,
and Stephen Baumert. In Section 1.2, | provide a brief summarthe connection be-
tween chapters in this thesis and joint work with these dbs. Kevin O’Malley was
one of the primary developers that laid the foundation fol3®Bwhich is the platform
for market game simulations in Part II.

| would like to thank my thesis committee — Robert Smith, MiehWellman, Ma-
rina Epelman, and Satinder Singh Baveja — for their carefatimg and insightful com-
ments. Their feedbacks are invaluable in improving theighes

This thesis could not be completed without the guidance fnyradvisors, Michael
Wellman, Robert Smith, and Marina Epelman (although shet®fiicially listed due to
Rackham’s rule, she is really my third advisor for the efate devoted in advising me).
Each of them has very different advising style, howeveir fheession for research, teach-
ing, and advising is unmatched. Their positive attitudeaimis my work have helped
shaping my research career, and they provided ideal andlimiziges on what passionate
researchers should be like. They also showed great coatimes for my career devel-
opment, especially during the final stage of my Ph.D. studyé a great deal to them.

| am grateful to the members of both Decision Machine GroupRynamic Systems
Optimization Laboratory: Daniel Reeves, Kevin Lochnerciiis Ghate, Blake Nichol-
son, Chris Kiekintveld, Yagil Engel, Irina Dolinskaya, aBtephen Baumert. Their feed-
backs on my work and my various presentations are greatlyea@ed. | especially
would like to thank Dan and Kevin for their numerous proaddings of my writings and
also their social support. Without them, my life as a gradsatident would certainly be
less delightful.

| also would like to thank my coworkers and friends at AATPQ aviustardseed,
for their continuous support and prayers. And finally, | wblike to thank my family,
especially my wife, Cindra, for her continuous patience affiokt in pushing me through
the Ph.D. program, for taking care of our son, lan, and fountarily being the first
audience on almost all my research talks.

TABLE OF CONTENTS

DEDICATION e i
ACKNOWLEDGMENTS e iii
LISTOF TABLES e e viii
LISTOF FIGURES e e IX
LISTOF APPENDICES e Xii
ABSTRACT . . Xiii
CHAPTER

1 Introduction
1.1 ScopeoftheResearch
1.2 Organization e

2 Preliminaries: Basicsof Game Theory 4

3 When to Include Stochasticity: A Case Study of End-Statniihg
Problemin ProductionLines

3.1 Introduction
3.2 A Graph Model of the End-State Planning Problem
3.2.1 A Graph Model for Representing Production Lines
3.2.2 The Formal Definition of the End-State Planning Pnoble9
3.3 Deterministic Dynamic Programming Formulation 10
3.3.1 Deriving End States from the Shutdown Schedule

3.3.2 Computing Shutdown Time from the Shutdown Schedule 10

3.3.3 Dynamic Programming Model 11
3.4 Special Cases: Strip-All and Exact Job-Count Goals 14

3.41 Strip-AllGoals, 14

3.4.2 ExactJob-CountGoals 14
3.5 Computational Experiments 15
3.5.1 Descriptionofthe Scenario 15
3.5.2 The Optimal Policy and Alternatives 18
3.5.3 The Potential Benefits of a Stochastic Model 19
3.6 Conclusion. 21

PART | Sampled Fictitious Play Algorithm for Large-Scale Dis-

crete Optimization Problems 22
4 An Introduction to the Sampled Fictitious Play Algorithm. 22
4.1 SearchingfortheNE 23
42 Remarks e 25
5 Optimizing Large Scale Simulations by Parallel Computing 27
5.1 Introduction 27
5.2 Traffic Signal Control Problem Formulation 29

5.3 CoSIGN: SFP Algorithm for the Traffic Signal Control Piein 30
5.3.1 Formulating Coordinated Traffic Signal Control Prob-

lemasaGame. 31
5.3.2 Simulation by INTEGRATION-UM 31
5.3.3 SFP with Simulation-Based Best Reply Computation .2 3
5.4 Case Study: Troy, Michigan, Network 35
5.4.1 Competing Timing Plans and Algorithms 36
5.4.2 Benefits of Signal Coordination and Predictive Infarm
tion 38
5.4.3 Parallelized Implementation of CoSIGN 41
5.4.4 Relative Performance of Parallelized CoSIGN vs. €oor
dinateDescent. 44
6 Approximate Large-Scale Dynamic Programming: A SpecadeC . . . 48
6.1 Introduction 48
6.2 The Joint Optimization Problem 50
6.2.1 DecisionModules 50
6.2.2 The Markov DecisionProcess 51
6.2.3 Complexity of the Markov Decision Model 55

6.3 Game-Theoretic Model for the Joint Optimization
Problem 56

6.3.1 Ensuring Feasibility 57
6.3.2 Best Reply Problem for the Capital Investment Module59
6.3.3 Best Reply Problem for the Production Scheduling Medi0
6.3.4 Best Reply Problem for the Revenue Management ModQle 6

6.3.5 Best Reply Problem for the Sales Planning Module . . . 60
6.3.6 The Complexity Bound for Solving the Decomposed MDP 60
6.4 Vehicle Manufacturing: A Numerical Case Study 61
6.4.1 ProblemData 61
6.4.2 Experimental Results and Analysis 62
6.4.3 Obtaining Managerial Insights via Optimizations . . .64
6.5 Conclusion. 65
7 Sampled Fictitious Play: Conclusions and Future Work 67
7.1 Summary of Contributions 67
7.2 Future Work 68

PART Il Market-Based Approach For Decentralized Resource

Allocation Problem 70
8 Market-Based Approach: An Introduction. 70
8.1 Motivation 70
8.2 Background 71
8.2.1 Market-Based Resource Allocation 71
8.2.2 Game-TheoreticAnalysis 72
8.23 Challenges., 72
9 Market-Based Approach: An Empirical Methodology 74
9.1 Iterative Mechanism Selection: An Overview 74
9.2 SimulatingMarketGames oL 74
9.3 Designing Agent Strategies 77
9.4 Finding Nash Equilibrium in Empirical Games 79
9.5 Conclusionand Related Works 80
10 Strategy Reduction by IteratéeDominance 81
10.1 Introduction 81
10.2 Iterated-Dominance and Equilibrium Approximation. 82

Vi

10.3 Implementation of IteratedDominance 84
10.3.1 Finding Minimab That Dominates Subset of Strategies . 84

10.3.2 A Greedy Heuristic for Forming Domination Path . . . 5 8
10.3.3 Computing Tighter ErrorBounds 86
10.3.4 §-Dominance for Symmetric Games 88
10.4 Numerical Experiments 89
10.4.1 A Brief DescriptionontheGame 89
10.4.2 Comparison of REEDY-1 and QREEDY-2 90
10.5 Conclusion 92

11 Task Allocation for Dynamic Information Processing Eoniments: A

Motivational Example L o oo 94

11.1 Introduction 94

11.2 Task Allocation Scenario 95

11.2.1 Dynamic Task Allocation Problem 96

11.2.2 Market Structure Lo 97

11.3 AgentStrategy 99

11.3.1 Greedy Strategy 100

11.3.2 Marginal-Value Bidding Strategy 101

11.4 Numerical Experiments 103

1141 Setup e 103

11.4.2 Dynamic Task Allocation ScenarioinGDL 104

11.4.3 Analysisand Discussion 104

115 Conclusion 106

12 Market-Based Approach: Conclusions and Future Work 107

12.1 Summary of Contributions 107

12.2 FutureWork 108
APPENDICES e 109
BIBLIOGRAPHY e 120

Vil

LIST OF TABLES

Table
5.1 Performance of three competing algorithms. 38
6.1 Performances of the MDP solver and the SFP solver. 63
10.1 Summary of various error bounds at each strategy level. 92
11.1 Performance comparison. i 105

viii

Figure
3.1

3.2
3.3
3.4
3.5
4.1
5.1
5.2
5.3

5.4
5.5

5.6
5.7
5.8
5.9
5.10

5.11
5.12

LIST OF FIGURES

A serial production line. The jobs enter the productiona &t line element
N,and exitatlineelement

Schematic graph for the engine compartment zone.

Schematic graph for the underbody zone.
Maximal achievable value and value obtained in optinoéitp.
Shutdown time for each lineelement.
Sampled Fictitious Play (sample size1).
Simulation-based best reply function.

The snapshot of Troy'sareamap.

The Troy network topology model, composed of 529 link¥) 2odes
and 72 zone centroids that can serve as origins or destsatio

Coordinate Descent (CD) algorithm.

The evolution of best values as a function of iteratiaimtdor the normal-
flowcase.

The evolution of best values as a function of iteratiomntdor the light-
flowcase.

The evolution of best values as a function of iteratiaomtdor the heavy-
flowcase.

Average travel time as a function of vehicles’ departimg, for the light-
flowcase.

Average travel time as a function of vehicles’ departimge, for the
normal-flowcase.

Average travel time as a function of vehicles’ depgrtiime, for the

heavy-flowcase..

Running time of CoSIGN versus degree of parallelirafio

Average travel time of solution found by CD when givea same wall-
clock time as the parallel execution of CoSIGN wihprocessors, vs.
K.: for the normal-flowcase.

5.13 Average travel time of solution found by CD when givea same wall-
clock time as the parallel execution of CoSIGN wihprocessors, vs.
K.: for the heavy-flowcase. 47

6.1 The Markov decision model used,, ,, ; is the decision being made at
state(m, n,). F(m,n, 1) is the set of feasible decisions at state n, i)
and will be defined later. The demand functidp, and the available frac-
tion of the capacityp,,, will be realized after the decision is made. These
two realized random variable will then complete the stadadition. As
pn, andd,, realized, the reward?LS "t is also generated and accumulated. 54

m,n,. !

6.2 Interacting diagram indicating how decision modulésafeach other. . . 58

6.3 Important problem data: (a) Production line buildingt¢paid by period,
as a function of capacity. (b) Demand as a function of pricgVériable

costasafunctionofcapacity. L. 3 6
6.4 Best values plotted against iterations, for the SFResolv 64
6.5 Average inventory levels versus mean reliability level 65
9.1 General market gaming platform, depicted at functitsadl. 76

10.1 LP-A@E, T): formulation for findingd that dominated, a set of strategies. 85
10.2 Simple greedy heuristic, one strategy (the one witkt l8as pruned in

each iterationuntf2 isallusedup. 86
10.3 Generalized greedy heuristic, which is similar to Aitjon 10.2, but

prunesk strategies in each iteration. 87
10.4 Evolutions of number of remaining strategies versgs@aclatedd. . . . 91
10.5 Error bounds at each strategylevel. 93

11.1 A high-level illustration on task allocation problem a decentralized
setting. Agents on the left-hand side are assigned cedakstindepen-
dently, and required resources must be obtained througtotinespond-
ingexchanges. 96

11.2 Two-phase markets. SAAs are used for the “preparati@sgy where
each agent drafts its initial plan. After the “planning péfakegins, all
SAAs are converted to CDA. The planning is “online”, therefagents
will receive dynamic task information, market updates, hade to sub-
mit task commitments as time progresses. a8

11.3 AB3D specification of a resource auction. The third amaith rules
(when clauses) trigger the change from ascending auction to CB-af

market. e 100
11.4 Simple shading procedure for the marginal value glyate. 103
B.1 This is the main game file that defines important game petiensmen-

tionedin Section 11.4.1. 117
B.2 This figure lists the GDL used in defining agent’s prefeeen. 118

B.3 This figure lists the GDL used in defining dynamically g tasks.
Note that the section that defines task’s parameter is it the frag-
ment in Figure B.2, therefore it is neglected here. 119

Xi

LIST OF APPENDICES

APPENDIX
A Adaptive Signal Re-timing L L o a0
B Game Definition Language for MarketGames 111

Xil

ABSTRACT

Game-Theoretic Approaches for Complex Systems Optinoizati

by
Shih-Fen Cheng

Co-Chairs: Robert L. Smith and Michael P. Wellman

A complex system is an artificial system that cannot be maldatalytically or opti-
mized in an effective manner, usually because it posselsdsltowing properties: (1)
the system can only be modeled as a simulation, (2) the sitegfroblem is untenable,
so that even if the system could be modeled analyticallypitle be impractical to solve
it exactly, (3) necessary information required for problsaiving is distributed in na-
ture. This thesis presents methods for modeling and optigizystems with the above
challenging properties.

We first discuss the important modeling decision of whetbhentlude stochasticity.
By employing a real-world case study, we show that a stanalanterical procedure can
indeed help us make this decision. Next, we use the chatigngioblem of finding
coordinated signal timing plans to motivate the need of a pamdigm for simulation
optimization. We employ the game-theoretic paradigm of@adhfictitious play (SFP)
to iteratively converge to a locally optimal solution. Theykto the empirical success
of SFP is parallelization. Through parallelization, SFRabustly scalable to realistic
size networks modeled with high-fidelity simulations. Cargx to other less adaptive
approaches, significant savings are achieved. This proeeslstandardized so that we
can use it to solve many unconstrained discrete optimizgitoblems. However, for
constrained problems, additional effort is required imgssFP. We introduce the idea of
feasible space mapping which, when combined with SFP, carséé in decomposing
and approximating large-scale dynamic programming modléith a large scale decision
making problem in automotive manufacturing, we demonstiat high quality solutions
can be obtained by this approach in several orders of maimitaster time than the
traditional global algorithm.

Finally, for distributed problems, we address the decénéition issue with a market-
based approach. The market-based approach involves: €h} afyategy development,
(2) empirical game-theoretic analysis, (3) assessingefity of the solution obtained by
the market-based approach. We first introduce the marlsstebapproach, with special
attention on the strategy-pruning techniques. We thenamsedllocation for dynamic
information processing environments as an example totidtes the methodology and
demonstrate its effectiveness.

Xiii

CHAPTER 1

Introduction

1.1 Scope of the Research

This thesis is devoted to the optimization of complex artfisystems. A “complex
artificial system”, by our definition, is a system with followg properties: (1) the system
can only be modeled as a simulation, (2) the size of the pnoidaintenable, so that even
if the system could be modeled analytically, it would be iaqtical to solve it exactly,
(3) necessary information required for problem solvingisiributed in nature.

In some cases, although the problem may look complicatedsasight, with a careful
modeling effort, we can use a far simpler model in represgntine original problem
without losing modeling fidelity. With sufficient simplifican, the global optimum to
the problem usually can be found in a reasonable amount ef W@ should always look
for such opportunities to simplify the problem before abawmidg our attempt to solve
the problem exactly.

However, in many practical examples, when all our effortsiatplifying the model
have failed (here, failure in simplification means that ifsusplify the model any further,
the resulting model will be unrealistic and unrepresewtiwe usually end up with a
model that is too huge to be solved by any exact algorithm. dfterent reasons to
be cited later, for both centralized and distributed cases,of the more effective ways
to solve these optimization problems is through decomjpositGame theory will be
shown to be a useful tool for performing analysis in thes@dgmwsed resource allocation
problems. For centralized problems, the main questionsidered are:

e How can we decompose the optimization problem? What is tinergé proce-
dure one can use to solve an optimization problem in the alsmraplex-system”
settings?

e What are the properties of a solution obtained in a gameré¢tieananner?

e What is the complexity of obtaining solutions in decomposeablems? How does
it compare to other competing algorithms, especially thbatfind global optima?

In Part | of this thesis, we try to answer the above three gquesby investigating two rep-
resentative examples in simulation optimization and largge Markov decision process.
The study of these applications can help us in constructgenaral framework for solv-
ing a general class of optimization problems in compleXieri systems.

For distributed problems, we consider markets as a meahdoisdirecting resource
allocation. In studying decentralized resource allocafooblems, we are interested
in both empirical game-theoretic analysis and market-dhapproaches. The empirical
game-theoretic analysis focuses on techniques for estighatarket games via running
simulations and solving for Nash equilibria (to be definedCimapter 2). On the other
hand, the market-based approaches focus on solving dalizedr resource allocation
problems with market mechanisms. For these two topics, tia questions considered
are:

e How efficiently do markets allocate resources, when contpi@rether alternatives
and global allocation?

e How do we identify and quantify possible sources for the tfsfficiency in mar-
kets?

e How can we design approximated approaches (with properteormnds) for search-
ing for Nash equilibria in a large game?

In Part Il of this thesis, we try to answer the above three toes from two fronts,
empirical game-theoretic analysis and market-based appes, respectively.

1.2 Organization

Chapter 2 provides a review of the basics of game theory. itapbnotation and
terms like “game” and “equilibrium” are defined. Relateddresns are also listed for
completeness.

Chapter 3 presents a case study on the important modelingiateof whether to
include stochasticity [Chengt al., 2006]. Stochasticity is a common modeling feature in
many applications, however, including it without carefahsideration would sometimes
bring in only limited benefits at extremely high cost in cortgision. The case study
presented in Chapter 3 demonstrates the use of a standareldpre for making this
decision empirically.

In cases where models inevitably become too big to be solvadtly, we need to
consider approximation algorithms. Part | covers how toraximately solve complex
discrete optimization problems under various conditiohlse common theoretical tool
used from Chapter 4 to Chapter 7 is sampled fictitious playrjSFhe basics of SFP and
the motivation for using it in searching for solutions areaduced in Chapter 4.

Chapter 5 presents a parallel implementation of SFP on deciggithg coordinated
traffic signal control problem [Chenet al, 2007]. The purpose of this chapter is to
demonstrate how one can use SFP as an off-the-shelf tootitnipe a black-box type

2

objective function with unknown properties and lengthyleation time. As demon-
strated in this chapter, for time-sensitive applicatigregallelization of the algorithm is
extremely important, and SFP can be easily scaled up in #igdareode in order to meet
this need.

Chapter 6 discusses how to approximate an optimal contiadypwith SFP in a
Markov decision process [Chergg al, 2005a]. The Markov decision process studied
in this chapter is used in modeling a joint optimization peob in general production
systems. The major challenge addressed in this chaptee ieahdling of non-trivial
constraints. Chapter 7 then concludes the first part.

Part Il is devoted to the study of market-based approacheatefzentralized resource
allocation problems. Chapter 8 poses the challenges ohttatiegation, and motivates
the use of market mechanisms in dealing with it. Chapter 8 grevides an overview
on the empirical analysis methodologies that have beemedtby MacKie-Mason and
Wellman [2006].

Chapter 10 investigates the technique of strategy pruaimgjts implications for the
quality of the solution [Cheng and Wellman, 2007]. By prunimpromising strategies
aggressively, and accepting errors along the way, the rdgthaposed in Chapter 10
enables us to analyze games we could not handle previously.

Chapter 11 presents a case study on a general task allosagaario. This chapter
provides a thorough analysis of a typical decentralizedues allocation problem. It
serves as an example of how to use market-based approaadieesworld applications.
We then conclude the second part in Chapter 12.

LIt refers to any constraint that is not in the format of = < u, wherel andu are constants.

3

CHAPTER 2

Preliminaries: Basics of Game Theory

Let I" be a finite game in strategic form, i.e., a game with finite nends players,
with each player’s action set being finite and non-empty, taedoayoff function being
well defined for all joint actions. LetV' = {1,2,...,|N|} be the set of players if.
For each playet € N, let S; be the finite set of feasible actions. We uséo denote
an element of5;. LetS = 5, x S, x ... Sy be the set of feasible joint actions by all
the players. We useto denote an element &. The payoff function of playeir € N
is denoted byu;, : S — R. For convenience, we use the tupl€, {S;}, {u;(s)}] to
represent a gamie.

For playeri € N, let A; be the set of mixed strategies, i.e.,

Ai={fi:Si—10,1]:) fils)) =1},

S, €S

Let A = Ay x Ay X ... Ay. For playeri € NV, we extendy; to be its payoff function
in the mixed extension df. That is, for anyf € A,

wilf) = wilfi, for o fin) = D tils1, 52, s fi(sa) fas2) - fia (S1a0),

seS

where we have assumed that players choose their actionsendently.

Forg € A andfl € Aia we usdfiv g—i) to denthglv g2,---,0i-1, fi7 Git1y - - 79\/\/\)1
which is a joint mixed strategy. We say thats aNash equilibriumif all players play
strategies that are best responses to the others, as maie [im¢he following definition:

Definition 2.1 A strategy profiley is a Nash equilibrium (NE) of gamk iff for every
i€ N, fi € A, uig) > wil fi, 9-4)-

Nash [1950] proved that every finite game in strategic forsydeixed-strategy NE. We
also define an approximate version of NE.

Definition 2.2 A strategy profilgy is ane-Nash equilibrium{-NE) of gamd iff for every
i €N, fi € Ay ui(g) + € > uil(fiy g-i)-

A belief path{ f(¢)}2, is a sequence iA. We say that the belief patly (¢) }$2, con-
verges to equilibrium if every accumulation point{of(¢)} 72, is an equilibrium. That is,
a belief path that converges to an equilibrium is eventusdbytrarily close (in Euclidean
norm in an appropriately defined Euclidean space contaiing some equilibrium of
the mixed extension df.

Two special classes of games are of particular interestigmtliesis: games with
identical interests, and games that are symmetric witheasjp payoffs. These two
classes of games are defined as follows:

Definition 2.3 A game in strategic form is said to have identical interefssriall s € S,
u1(s) = uz(s) = ... = up(s).

Definition 2.4 A game in strategic form is symmetric if for allj € N: (a) S; = 5;,
and (b)UZ(SZ, S—i) = Uj(Sj, S_j) WheneveBi = 38j andS_Z' = S5_;.

For a detailed description of important concepts in gamerih@lease see Fudenberg
and Tirole [1991].

CHAPTER 3

When to Include Stochasticity: A Case Study of
End-State Planning Problem in Production Lines

Building models for optimization problems is sometimes enlike art than science.
Important modeling decisions, like identifying importdé@atures, evaluating the value of
each candidate feature, and balancing between simplictty@alism, are usually based
on intuition and the process of trial-and-error.

In many applications, properly accounting for stochastiis usually the single most
important consideration in building models. The decisionhether to model stochas-
ticity or not is tough to make and it may be tempting to inclitdehenever uncertainty is
observed in the model. However, extending a model withawfaaconsideration usually
results in an unsolvable model. Worse, even in cases whecewe solve the augmented
models, it is not clear if the benefits we would enjoy woulda be significant.

In this chapter, we look at a challenging real-world sceman end-state planning
in production lines. Whether we should incorporate stootigsor not is an important
decision we must make in this case study. We use the expeiftectdce between the
perfect information model and the nominal model to estintla¢epotential gain we can
get by considering stochasticity. This measure providasatde information in making
our final modeling decision.

This chapter is organized as follows. Section 3.1 presdm@tdackground and the
motivation for formulating the end-state problem. Sect®8 introduces an abstract
production line model; with this model, the problem of finglian optimal shutdown
schedule when considering both end-state and productials gothen formally stated.
Section 3.3 presents an efficient dynamic programming féatian for finding the opti-
mal shutdown schedule. Section 3.4 describes some spas&g where the problem can
be solved even more efficiently. Section 3.5 summaries ctatipnal experiments, with
special attention placed on computing the potential benéfibnsidering stochasticity.
Finally, Section 3.6 concludes the chapter, and discusgdsssons from this case study.

3.1 Introduction

Maximizing equipment utilization is essential to the prfility of capital-intensive
production processes. Although much research addressgsdblem of how to min-
imize system downtime, little has been written about how tstreffectively use the
remaining downtime for a variety of critical tasks such asvpntive maintenance, cali-
brations, installations, and upgrades that can be perfdonky when the system is down.
Complicating this challenge is the fact that the contentthefproduction system when
it shuts down may constrain the performance of such downtasles. For example, in a
production line consisting of stations separated by bsffesnsider the task of upgrading
a particular station. Safety or accessibility needs migttate that this station be empty
of jobs if the upgrade is to be performed. Moreover, valigtihne upgrade requires a
supply of jobs of appropriate types immediately upstrearthefstation, together with
sufficient empty space downstream to accept these jobsthfigrare processed. The
challenge of achieving as many such requirements (whidnoeitalled end-state goals
in the rest of the chapter) as possible while trading off ptiélost production or over-
time costs is often an exceedingly difficult optimal conpabblem. To our knowledge,
this problem has not yet been addressed in the literatur¢hidrchapter we present a
dynamic programming model for computing a production systentrol policy that op-
timizes the expected value of the system shut-down. Noteatti'ough we specifically
discuss an automotive assembly application, this metloggak applicable to any sys-
tem involving work-in-process inventory. Examples inchall refineries, semiconductor
manufacturing, transactional back-office operations, raad product development and
introduction pipelines. Cheurg al.[2004] described one such example faced by chem-
ical production facilities.

3.2 A Graph Model of the End-State Planning Problem

In this section we introduce the use of a graph model in remtesy production
line. Relying on this representation, we then formally defime optimization problem of
satisfying end-state goals considering the cost of overaimd lost production time.

3.2.1 A Graph Model for Representing Production Lines

A typical production line contains three types of elememsrk stations that are
used in accomplishing certain manufacturing tasks (patgssing, assembling, to name
a few), buffers that are used to store work in process, andeatars that connect work
stations and buffers. In most cases, work in process canbenyored in buffers or work
stations, therefore, when defining end-state goals, werasthat only work stations and
buffers will have end-state goals defined.

An end-state goal for each production line element (workigteor buffer) is rep-
resented as a collection of constraints on its content (whan be a list of allowable
types of jobs, or simply a job count) when the production lieenes to a full stop. In

general, satisfying all requirements may not always beipkeskecause: 1) the provided
build schedulé may cause conflicts among stations or buffers, and 2) satighll re-
quirements may require unreasonable overtime, or it mayirethe line to be shut down
very early, which can be prohibitively expensive. Theseepbéal conflicts, as mentioned
above, are what make the end-state planning problem clyalign

By defining work stations and buffers (both referred tdiras elementsn the rest of
this chapter) as nodes, and connectors/conveyors as acsndescribe a general class
of production lines as directed graphs. However, to simphé problem, we will focus
on the most commonly seen topology, serial line topology.the rest of the chapter.
Moreover, in our graph model, we will assume that shutdowaisitens are only made at
nodes (i.e., line elements). A graph for the serial line togy can be seen in Figure 3.1.
Note that for the convenience of later explanation, we vafiiane that line elements are
labeled from the tail of the line to the head of the line. Jobsbered from 1 ta/ will
enter the line at line elemenf and exit at line element 1.

Units Inflow
JN JN-1 J2 J1

Figure 3.1: A serial production line. The jobs enter the pibn line at line element
N, and exit at line elemerit

We will now formally introduce notation used in defining thedestate planning prob-
lem:

e Let N be the number of line elements in the production line.

e Let N be the set of line elements. Line elements are numberedhgtéimom the
end of the line. Thus, the last line element will have an ID ,ofvhile the first line
element will have an ID ofV. The reason for this numbering system will become
clear later.

o LetA = [a;],i,j € N be the adjacency matrix. If there is a link leading from line
element: to line elemeny, a;; = 1, otherwisen;; = 0.

e LetG = (N, A) be the directed graph representing the production line.
e Let J be the number of jobs flowing into the production line.

e Let J be the ordered set of IDs for the jobs flowing into the prodarctine. It is
assumed that jobs in this set will enter the production line loy one, starting with
the first job.

LA build schedule for a production line is a list of jobs to begessed in order. Usually some vital
job-related information will also be included in the lish dur case, the style of each job is required.

e Letm, be the capacity of line elementn € N.
e Letr, be the tuple that describes the list of jobs contained, im € N.

¢ In our formulation, we define a goal associated with each dieenentn as R,,,
whereR, is a set of acceptable tuples in the forrtdt . .. , i), n € N, wherei®
refers to a particular job type.

e Let T, be the desired line shutdown time, e.g., the end of the nostm&. A
penalty is assessed if our shutdown schedule induces acstnutime other then
Ty.

3.2.2 The Formal Definition of the End-State Planning Problen

The goal of the end-state planning problem, as describéi@éras to find shutdown
schedules for all line elements in a production line, so tthatwalue of meeting end-state
goals minus costs from running overtime or lost productioret is maximized. To make
this statement precise, we need to specifically define: 1} whiastitutes a shutdown
schedule? and 2) how do we know if an end-state goal is sditisfie

The shutdown schedule at some line element € N, can either be an absolute
time, ¢, or a job 1D, j,, wherej,, specifies the job ID of the last job to be released from
line elementn. Given that the service time at the line element may be ssichave
choose to usg, in order to have better control over the production linedsithe time
when a job reaches a line element may be uncertain).

At the end of the horizon (when all line elements are shut dpithe tuple of jobs
within line elementn, r,, is in the setR,,, a valuewv,, will be awarded, otherwise, a
valuep,, will be penalized. Note that in practice, our gdal may be generated from
a fairly general statement (e.g., 5 vehicles regardleskef styles), and thus checking
goal fulfillment by tuple matching is obviously very inefeit in these cases (the size of
R, will be very large in these cases). Here we suggest the tuptehimg mechanism
just to explain the concept. In practice, the goal matchanglze more specialized, e.g.,
we can use predicates, ==, and> on the number of jobs in a line element, and we can
define an end-state goal as a logical statement: (humbebsipdine element) == 5.

Assuming the system can be simulated, we can view the siionlas a function,
F({jn}, Tmax), that takes the decisions at the line elemefifs}, and the upper bound
on the production line running timé,,x, as inputs. The outputs of the simulation are
(Ts,{rn,n € N}), whereT represents the time at which the production line comes to a
full stop? as a result of the decisions, angdrepresents the state of line elemert the
time the line stops. In our formulatiofi, is defined as the desired stopping time. When
T, > T,, overtime cost will be incurred. Alternatively, f, < T,, a penalty associated
with lost production time will be charged. We denote unitrbivee cost byp,, and unit

2Note that since line elements in the production line may stagifferent times, the shutdown time of
the line is defined as the maximal shutdown time observed.

lost production penalty by,. The problem can thus be formally defined as:

max >[Iy — (1= L)pa] = po(Ts = Tu) " — po(Ts = Tu)™ (3.1)
J1yees JN neN
S.t.

(T57 {Tnvn E N}) = F({]nvn E N}vaaX)
=41 mEE N

0 , olw
m€eJ,neN

3.3 Deterministic Dynamic Programming Formulation

The key challenge we must address in the model is derivintytice expressions
forr,,,n € N, andT,.

3.3.1 Deriving End States from the Shutdown Schedule

To derive end states from the shutdown schedule, we reduatéite shutdown sched-
ule be jointly feasible in the sense that for each line eldmem < N, job j, will
eventually be processed at line element

For two consecutive line elements— 1 andn, j, must be at least, ;. And since
the difference ofj,, andj,_; indicates the number of jobs left in line element 1, we
require thatj,, — j,,_1 < m,_;. Summarizing the above two observations, the values for
jn are thus constrained as follows:

J n = 1
n €9 g : 3.2
J { {]n—lv]n—1+17---7]n—1‘|‘mn_1} n > 1 ()

With all j,, feasible, the end state of line elementan then be obtained as follows:

rn:{jn+17"'7jn+l}7 TL<N, (33)

where line element is empty if j, = j,.1. However, the contents of line elemenit
cannot be decided directly, because bptlandj, ., are required in order to decide line
elementz’s content. To handle this special case, we can define a durtemeat in front
of line elementV, so that its content can be explicitly controlled. With th&eduction
of the dummy element;y can also be determined similarly to (3.3).

3.3.2 Computing Shutdown Time from the Shutdown Schedule

Let¢;,, be the processing time for jobat line element:, ande; ,, be the time when
job j exits line element. For jobj, at the time when it finishes processing at element
it can move on to the line element— 1 if there is spare capacity available, otherwise it
will wait in the current element until the job in element- 1 finishes processing. From

10

this observation, and the assumptions that the produdtiend linear and all parameters
are deterministic, we can computg, iteratively:

ejn=max{€jnt1 +tin, €1n+ttin, €mm m-1},Jj=1....J, n=1... N.

(3.4)
Equation (3.4) describes three requirements for a job toenfrem line element + 1 to
line element.. To simplify the formulas, let;,, be 0 if eitherj <0orn <0orn > N.
We will explain what each term means as follows. The first tg@m, 11 + ¢;,,), States
that jobj must exit preceding elementt+ 1 before entering element The second term,
(ej_1..+tjn), States that preceding jgb- 1, must finish processing at elemenbefore
job 5 can be processed at element The third term.;_,,, , ,—1, represents the time
when the first job in element — 1's queue exits. This time matters if element- 1's
gueue is full when joly finishes processing at elementin this case, joly cannot exit
elementr until the head job in element— 1 exits. Taking the maximum over these three
terms guarantees that all requirements are met whej goiis element..

Obviously, the production line shutdown time can be digecimputed from{e; ,, }
and collection of decisiongj, }, as:

T, = I,?S&{eﬂ'm"}' (3.5)

Let 7, be the maximal shutdown time from line eleménb n, then the production
line shutdown time can also be computed recursively by:

T, = max{e;, n, Tn-1}, (3.6)

and7, = Ty.

3.3.3 Dynamic Programming Model

From the above assumptions and derivations, we can seéithptdblem can be cast
as a sequential decision process, where each line elenning from line element 1,
successively makes a decision. From Equation 3.2, we cathaefor line element to
make a “feasible” decision, it must knoyy_;. Also, as shown in (3.4), the time when
each job leaves each line element can be computed a priois @odsidered given input
data for the problem.

From the above descriptions, we can see that the minimal anedinformation re-
quired to make an optimal decision at each line element dedun, the current line
element ID;j, the decision from the downstream line element; @pd;, the maximal
shutdown time up to line element— 1. The reward/penalty for choosing decisign
at line element, can be obtained by first computing end-state tuples acaptdiequa-
tion (3.3), and by looking up the end-state tuples in the gedl we can have the re-
ward/penalty. Note that we can calculate the reward/pgaaline element. only after
we have made a decision for line element 1. This is due to the fact that the contents
of elementn are not known until the decision at element- 1 is made (see Equation
3.3). Because of this, we will have to insert a dummy elemeritdnt of line element

11

N in order to control the content of line elemelt This dummy element is assumed
to have zero cycle time and capacity large enough to holdaljabs. With these two
assumptions, the addition of this dummy element will no¢etfiother part of the model
except granting us the ability to control the content of ihement/V.

When we reach line elemenX + 1, the beginning of the line, we will havg;, and
the overtime/lost production cost can be computed accglgin

The DP formulation is formally described as follows:
e The state for the DP is defined @s, j, T):

— n is the stage variable, representing the ID of the curreptdliement,
— j is the decision from element— 1, it serves as the lower bound gn,
— T is maximal shutdown time of line elements from Irte- 1.

Note that fom = 1, there is no elemeni— 1, thus there is only one state for= 1,
and that ign, 0).

e Feasible decision at state, 7, T'):

, n=1

jne{ {.]7.]+177j+mn—1} y n>1 (37)

e Reward function at state:, j, 7') with decisiony,,:
V(n7]a]n) = (In—l *Up—1 — (]- - In—l) ' pn—l) 72 S n S N +1 (38)
Tn—1 — {j—'—l,,jn}

I _ 1 9 Tn—leRn—l
=T 0, olw

e Overtime and lost production: overtime and lost productsoanly charged at the
line elementV + 1, by using the formula:
L(T) = po(T = To)" +pu(Ta = T)* (3.9

e Functional equation at state, j, 7"): maximal value one can get by acting opti-
mally from line element: to N, if current state ign, 7, T').

Forn =1:
f(n,0)= rjneg{f(n + 1,4, €un)} (3.10)
For2 <n < N:
f(n,j,T)= max {V(n,j;jn) + f(n+1,j,, max{T,e;, »})} (3.11)

Jn feasible
Forn =N +1:
f(n,j,T) = max {V(n,j;jn) — L(T)} (3.12)

Jjn feasible

e The answerf(1,0)

12

Starting Production Line with Initial Content

In the DP model described in the previous section, we inmpficissumed that the
production line is started empty, with job 1 just about toeernhe line. This restriction
can be easily lifted. We can emulate the effect of startimgptoduction line with given
initial content by pruning proper states from the DP.

Suppose we are given an initial state of the system, indigaltie position of each job.
Let p,. be jobk’s initial position (a line element ID). If jol& has not entered the system,
let p, be co. We can see that since jdbstarts at line element,, all line elements
upstream (with ID greater tham,) cannot use joli: as shutdown decision. As a result,
stategn, j,T), wheren > py, j < k, andV T', will be pruned.

Computational Complexity of DP Formulation

Here we compute an upper bound on the computational effguined in solving the
above dynamic program. The number of floating point opemnatiequired for computing
a functional value for each state, j, T') is approximately:

4 {(mn+1)(tv+4)+mn , 1<n<N

(m,+1)(t,+1)+m, , n=N+1,

wheret, is an upper bound on number of floating point operations reduio compute
V(n,c;c,). Giventhatn = 1,.... N+ 1,5 =1,....J, T = 1,..., Thas the total
number of floating point operations required is:

Z J - Tax((mn + 1) (t, +4) +mpn) + J - Tax((my1 + 1) (8 + 1) + mna)

n=1
J - Tmax (N - mp(ty +5) + mypa(t, +2) +2t, +5),

wherem,, is the mean capacity of the line elements.

From the model data based on the GM Lansing Grand River asg@tat, we can
roughly conclude that,, is 1.167. Taking, for exampléy = 66, J = 200, Tmax = 4800
(seconds), we can obtain a numerical lower bound for the texity:

J - Thax (N - my(ty, +5) + myy1(t, +2) + 2t, +5)
~ 7.394-107t, + 3.697 - 108,

Modern CPUs, with operating frequency measured in GHz, caxige computa-
tional performance in the range of several GFLOP® (loating point operations per
second). Suppose we are equipped with a machine with one 88ldapability, and let
t, be 100 (a number used for illustrative purpose); the proldamthen be solved within
10 seconds. Even with = 1000, the problem can still be solved within 2 minutes.

13

3.4 Special Cases: Strip-All and Exact Job-Count Goals

When the problem features certain goal structures, we canofiimal shutdown
plans much faster by exploiting these goal structures. Tabee specific, we will look
at two commonly seen goal structures: (1) strip-all goai #eek to remove all jobs
from the system. This type of goals are commonly seen duriagpmshutdowns, like
the semiannual shutdowns in automotive plants. (2) Jolotagoals that specify desired
number of jobs, regardless of types, in certain line element

To further simplify these special cases, we assume thaewalg these goals has
highest priorities, and thus we will always try to fulfill the goals if feasible.

In section 3.4.1, we will discuss the strip-all goals. Intget3.4.2, we will discuss
exact job-count goals.

3.4.1 Strip-All Goals

First note that in order to keep a line element empty, we oaiselio make the same
decisions for the current element and the previous elem8imice our goal is to strip
all line elements, this implies that decisions at all lineneénts should be the same.
Therefore, the only effective decision we need to make idifierelement 1 (the tail of
production line). Once this decision is made, decisionsfoother line element > 1
will be the same (as discussed earlier in the section, we wedntfill all the goals when
feasible). Checking the reward function, we see th@t) = p, (T — Ty) " +pi(Ty —T)*
is the cost we want to minimize. Sineg;, the time when job exits line element, is
monotonically increasing in (given somej), and monotonically decreasing jn(given
somei), T can be found as; ; that minimizesL(7"). This can be achieved by performing
a binary search os; 1,7 = 1,. .., J, with complexityO(In .J).

3.4.2 Exact Job-Count Goals

Job-count goals is usually stated as: “line elemestould be left with at least/at
most/exactlyr jobs”. In this section, we will focus on thexactjob-count goals.

Supposer; > 0,7 € B C N, is number of jobs that should be left at line eleméent
at shutdownn;, is then an exact job-count goal specified for line elemefor all other
line elementg € N\ B, strip-type goals are assumed, ire.= 0, j € N\ B. Similar to
the case where we have strip-all goals, when exact job cayrig specified for the line
element, itimplies that the difference betwegnandj;,; should be:;. Therefore, when
the decision at certain line elemenis fixed atj;, the decisions at other line elements can
be determined as follow:

(3.13)

_ Je—1+ N1]{?:Z+1,Z+2,,N
=N o= k=i—1,i—2,...,1

Following the procedure in section 3.4.1, we can firjg that minimizes.(T"). By using
(3.13), we can find decision at all other line elements,,If < 7;;, Vi € N, we are done.

14

Otherwise, (a) pick arbitraryc B with e;, ; > T}, search for newj; such that; , < Tj.
(b) Update allj;, £ € N by using (3.13). Repeat step (a) and (b) uatil < 7,,Vi € N.
In the worst case, the complexity will e(|B|(In J + N)).

3.5 Computational Experiments

To demonstrate the benefit of using DP for the end-state pigmproblem, we use a
hypothetical yet realistic end-state situation from thed production line, with parame-
ters tweaked in order to preserve business secrecy.

In this section, we first describe the scenario. After thacampare the performance
of optimal policy obtained by our DP model and other “ruletoimb” policies. Finally,
we examine the potential benefit we can gain if we explicilpgider stochasticity.

3.5.1 Description of the Scenario

An automotive plant is preparing for the launch of a new modshcurrently with the
production of old models. This requires the installatiomeiv equipment, calibration of
new and old equipment, and verification that new equipmenewry calibrated equip-
ment can still produce the existing model. At this time, saggpthe plant is just starting
to produce manufacturing validation builds — the first ptgpe builds of the new model
built at the plant. Call the current model types 1, 2, and 3tAednodel being launched
type 4.

In our case study, we focus on two zones, engine compartra€htgnd underbody
(UB) (as seen in Figure 3.2 and Figure 3.3), in an automotbaytshop line. In both
Figure 3.2 and Figure 3.3, larger squares labeled with ifileation numbers represent
stations, smaller round squares labeled with capacit@ssent buffers. These two zones
are both linear and connection is made from EC zone to UB zZéherefore these two
zones combined can be treated as a linear production lireqaged by our model).

Start Area
_ =

Transfer to
400 390 380 360 350 340 320 300
Underbody Zone

Figure 3.2: Schematic graph for the engine compartment.zone

Let lost production costs be 10/minute when early shutdavesequired, and over-
time production costs be 5/minute (these are represeatafiveal values with proper
scalings). Let the goals be classified as low, medium, ankl Vadue. Low value goals
earn 1 if achieved, cost 1 if not achieved. Medium value geats 5 if achieved and cost
3 if not achieved. High value goals earn 20 if achieved and €afsnot achieved (these

15

Start Area

- =

[o = o o o

Virtual line element for the 8—job area

End Area

Figure 3.3: Schematic graph for the underbody zone.

values are approximate, but of the right scale). The degioads are defined as follows:

1. The launch activities are causing more frequent downtmtee EC and UB ar-
eas, as these are the first impacted by new equipment. Torpretaeving of the
downstream system it is desirable to fill every station arftebyposition in these
areas with a vehicle of some sort. As each extra job will onrgmally impact
throughput, this implies a low value goal for each statiod each buffer.

2. EC stations 20, 50, 80, 130, 180 and 260 are load statidreselshould be empty
to allow verification that material can be loaded into theonfrnewly modified
conveyor systems. (Note that this is in conflict with the galabve). Each of
these goals is of medium priority, since the tests can beydd]although this will
slightly delay the launch. If critical, vehicles could bemoally offloaded, at cost,
from the line to empty these stations.

3. EC station 160 should have a job in it of type 4 to allow fairtimg of the welding
robot to follow a new weld-path for it. This is a high priorigpal since this test is
critical to launch timing. The buffers immediately beforedaafter this job should
be empty to allow engineers leeway to stop the line to bettaméne issues as
this validation build progresses through the system. Thedser goals are of low
priority, since the only impact of not achieving them is lowiteroughput.

4. EC station 300 and 320 were re-calibrated yesterday terbptocess the new
model. Unfortunately, there is worry that this may have eaysroblems with the
calibration for model type 2. These two stations and themadiately preceding
buffers should contain models of type 2 to allow for testifidhese goals are of
high priority since it is unacceptable to produce low qyatiirrent vehicles and it
is very difficult to test the calibration in any other way. Titeenainder of the line
after these stations should be empty to allow for jobs to beeddhrough stations
300 and 320. These goals are of medium priority, since theyddee manually
achieved at medium cost if not achieved through the actubkgate.

5. In the underbody line, new equipment is being installadstation 350. To en-
sure adequate working space, the area from station 330 tin8[{&ive must be
emptied. These are medium priority goals since vehiclesleagmoved, at some
cost.

16

6. In the underbody line, the 8-job area from the buffer priostation 260 up to the
buffer prior to station 330 should include 2 jobs of each typallow for testing
of the new equipment. Achieving the sequence of types sudh2a8-4-1-2-3-4
in this area is a high priority goal, since it is important &stt whether the new
equipment can adjust to a change of models. In fact, any seguehere the four
types are cycled through in two sets of four jobs is acceptabkatisfy this high-
priority goal. (Note: This is an example of mutually excitesgoals.) A less good
test would be a sequence where each type appears twice ango®igaositions, like
1-2-1-2-3-4-3-4. This is a medium priority goal. An even &walue goal is for
each type to appear at least once among the 8 positions.sTdisw priority goal.

7. All of the respot stations (140, 180, 210, 220, 240, 26@stated for re-calibration
this evening for jobs of type 1 or 4. Having either a job of tylper 4 in each such
station is a medium priority goal.

8. To enable precise measurements, the geometry setttranste80 and 120, should
be emptied. This is a medium priority goal. \erification oétle measurements
requires that the job immediately preceding these statiensf type 4. These are
medium priority goals.

Special attention should be paid to item 6 since the goalsel®in item 6 are asso-
ciated with a range of line elements, instead of a singledieenent as required by our
model. To model this type of goals without modifying the DPdab we define airtual
line elemenfor the range specified by the planner. In our example, thee laeginning at
the buffer prior to station 260 up to the buffer prior to statB30 in the underbody zone
are viewed as a virtual line element (as drawn in Figure 3v@)y capacity 8 (the sum
of capacities of contained line elements), and procesaing ¢quals to the sum of the
processing times of contained line eleménts

Finally, we have the following information:

Desired shutdown timé};: 4,200 seconds.

Maximal allowed shutdown tim&,,.,. 4,800 seconds.

Number of jobs: 200

The line is initialized empty.

With this information, we are ready to solve for the optimaliqy.

3Letn be the virtual line element. If goals are defined on line elm@side this virtual line element,
we must modify the reward function when we compute the ogtoheaisions at line element + 1 (the
decision made at line element+ 1 determines the content of the virtual line element). Fohdaasible
decisionj,, 1, besided/(n + 1, j; jn+1) (as defined in Equation (3.8)) which looks at the goals defimred
the virtual line element, we must also consider values andlies from the goals associated with sub-line
elements of the virtual line element. This sub-problem casdived by a DP formulation similar to the
grand DP.

17

3.5.2 The Optimal Policy and Alternatives

The test instance can be solved within 90 seconds on a PedtRih Ghz PC under
RedHat Linux. With the optimal policy, the production linegs at 4,189 seconds (11
seconds earlier than the desired time), and out of 93 godilsede we have achieved
69 goals, with the value from goals equals to 189 (the valamfgoals includes both
rewards for achieving goals and penalties for missing go&lsr each line element, we
can compute the maximal achievable value by considerinflictmg goals. To illustrate
the gap between potential values and realized values, wédpth maximal achievable
values and realized values in Figure 3.4. In Figure 3.4, tag represent the upper
bounds on values achievable at all line elements, and tle& bkr's are the value realized.
If achieved value matches the bound, it is all black, otheewihe gap is revealed in grey.
We also plot each line element’s shutdown time in Figure 3.5.

30—

Potential
I Real

Value (potential or real)

T Y Y Y Y Y MO RO TN

-10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60
Line element ID

Figure 3.4: Maximal achievable value and value obtainedimaal policy.

As described in Section 3.5.1, every line element withinsystem is associated with
at least one goal, and many line elements are associatetharththan one goals, usually
conflicting with each other. With 93 goals in the system, aadiing to make a reasonable
trade-off between overall system shutdown time and whicdlgytw satisfy, it is fair to
say that it is impossible for a human planner to manually capevith shutdown plans
near the quality of the optimal policy we obtain.

Just as a quick comparison, we can use one rule of thumb ebt&iom the field to
see how well one can perform under customary rules. Thisafulleumb states that the
plant should be shut down as close to the desired shut dovenaspossible, and if any
goal can be achieved while meeting this objective, it wildoeeptable.

Again, even for this simple principle (stops productioreliat some predetermined
time), it is extremely difficult to come up with a plan that wdaomply to this constraint,
and maximizing the value we can get by meeting the goals. di) fiais as hard as the

18

4200

4000

3800

3600 -

3400

3200

Shutdown time (seconds)

3000

2800 -

| |
0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60
Line element ID

2600

Figure 3.5: Shutdown time for each line element.

original problem. However, we can quantify the least loss tlonstraint would bring to
the value we can get.

In our experiment, we simply assume that the planner (whotliasconstraint in
mind) can somehow come up with an optimal plan under thistcains. The difference
between this plan and the true optimal plan can then be viasede lower bound on the
value that can be lost by implementing such rule (a very awasige one, since a human
planner is not optimizing the goal satisfaction while simgtdown the line).

Empirically, this rule can be emulated by setting overtimd &st production time
cost to extremely high values, and running the same sohanad he resulting policy
should then return a stopping time as close to the desiresdaspossible (while meeting
goals optimally).

For this case, the found policy will shutdown the system #yaat 4,200 seconds,
as desired (the production shutdowns 11 seconds earlibeiariginal case). However,
the number of goals that can be achieved drops from 69 to @bthenvalue from goals
also drops from 189 to 156, implying that by requesting thatmwust stop as close to the
desired time as possible, we are missing the opportunitysafting high-value goals.

3.5.3 The Potential Benefits of a Stochastic Model

Up to this point we have assumed that the model is deternanidbwever, one may
wonder whether it is necessary to include stochasticityhearhodel in order to better

19

describe the scenario. Extending our model in order to pm@te stochastic events
is not straightforward, and it makes our model significamdisger. Therefore, before
delving into the details on the expansion of the model, weld/bke to quickly measure
the potential benefit we can get by considering stochagtidit this section, we first
describe the origin of the stochasticity, and then we dstwsv to estimate the value of
stochastic model without having to construct one.

In the case studied here, the stochasticity comes from theatipn of each line el-
ement. In the deterministic model, it is assumed that limeneints operate smoothly
without breakdowns. However, unexpected glitches happe¢imas, and they usually
cause unexpected delay in the job processing. The follopamgmeters are used to char-
acterized the operation of every line element:

e Cycle time: time required to process a particular job. Adawg to the operational
experience, it is fair to assume deterministic cycle tinoesafl line elements.

e Mean cycles between failure (MCBF): as its name suggestBMs§pecifies on
average, how many cycles are required to see the next failuig assumed that
“cycles between failure” is a random variable following appenential distribution.

e Mean time to repair (MTTR): MTTR specifies how much time isuiegd to repair
a downed line element and restore its operation. It is alsarasd that “time to
repair” is a random variable following an exponential disition.

The realizations of “cycles between failure” determine wiaeline element goes down
during the planning horizon (each line element may go dowitiple times). If line
elementn is down when it is processing joy an additional amount of repair time,
drawn from the time-to-repair distribution, will be regedt besides standard cycle time to
complete the job. With this simple rule and the above infdrama we can then generate
e;n, for all job j and line element, using Monte Carlo simulation.

For every randomly generated instance, we can measure tfogrpances of poli-
cies generated under different modeling assumptions, lyapezfect information model,
stochastic model, and deterministic model, by executird gmlicy in this realized in-
stance. The differences among these three models are thendaianformation available
to them. The perfect information model, as its name suggbatsaccess to all the re-
alized information. For the stochastic model, the distitnal information of random
variables is available. For the deterministic model, ohly ineans of random variables
are available. By performing this type of analysis on a largeber of instances, we can
then estimate the expected performance of the policiesrgenander the above three
modeling assumptions.

Let the expected performance for perfect information mosteichastic model, and
deterministic model bé&'Vp,, EVs, and E'Vp, respectively. Sincé&'Vp, > EVs, the value
of upgrading to a stochastic model from a deterministic hod&Vs — E'1}), can be
bounded as follows:

EVs— EVp < EVp — EVp (3.14)

20

Since the realizations ef;,, are available to the perfect information model, we can find
the optimal policy for the perfect information model by ugithe same deterministic
solver loaded with realized,,,. With this setup, we can estimatel and E'Vp for

the scenario as described in Section 3.5.1. Surprisingly30 random instances we
generated£Vp = E'Vp. This implies that even when we consider the stochastictsven
of line elements breaking down, the policy generated detestically performs as well
as the policy generated with perfect information. Accogdia (3.14), for this scenario,
there is no point in including the stochastic features intoelel.

3.6 Conclusion

In this chapter, we demonstrate a simple numerical proeddunmeasuring the value
one can get from “upgrading” deterministic models to staticaones. As shown in this
case study, the use of such tool can keep the model simple wialiding a confidence
on the error bound for neglecting stochasticity.

However, it is not always possible to ignore stochasticity.cases where we are
forced to extend the model, we have to carefully considetriude-off between model
complexity and the benefits of being more realistic. Aftérrad mater how realistic the
model is, if we cannot solve it, it has limited value to us. B@jng in next chapter,
we will engage in a discussion of methods that can help uswligalthese additional
model complexities, hence allowing us to build much congtéd models than previously
allowed.

21

PART |

Sampled Fictitious Play Algorithm for
Large-Scale Discrete Optimization
Problems

CHAPTER 4

An Introduction to the Sampled Fictitious Play Algorithm

As mentioned in Chapter 1, optimization problems in compleiicial systems are dif-
ficult to solve due to (1) discreteness, (2) lack of nice proge in objective function,
and (3) size. Decentralization issues will be put off unéfttRl, and for now assume all
problems can be solved centrally. The above three diffesiltivhen combined together,
will result in combinatorial explosions of decision spacasd in almost all cases no ex-
act polynomial algorithm is known to exist. As a result, aagnreumber of heuristics that
aim at approximating a global optimum have been developed foide variety of such
problems. Unfortunately, those heuristics are usuallpl@m-specific and are not easily
applicable to other classes of problems.

In recent years, researchers have been actively workingonstics that can be used
in solving a general class of combinatorial optimizatioalgems. It was Glover [1986]
who first coined the terrmetaheuristicwhen he describetbu searchas a method that
superimposes on another heuristic. Since then, metaheusisvidely used in referring
to the study of general-purpose heuristics.

Effective metaheuristics usually have following charastes:

e Most metaheuristics have used randomness to deal with atigally large solution
spaces. In many cases, if every element within the solupaees can be reached
with nonzero probability, some forms of convergence restdin be established.

22

e Many metaheuristics have their roots in natural phenomiogable examples in-
cludegenetic algorithmgGAs), ant colony optimizationandtabu searchwhich
were inspired by phenomena in biology; asichulated annealingwhich was in-
spired by the annealing in metallurgy.

(For detailed discussion, see Dréal.[2006].)

The methodology used in this part falls in the general aremetheuristics. The
main idea of the approach dsvide and conquel.e., decompose the original intractable
problem into smaller, tractable subproblems, and solvestlsebproblems instead. How-
ever, naive divide and conquer will only work on problemg tieve separable objective
functions. For problems with a considerable amount of adtons among subproblems,
we have to carefully consider the impact these interacti@m on objective function
values and feasibilities, and devise a scheme that codedinhese subproblems prop-
erly.

In order to effectively coordinate a large nhumber of subjewis, we turn to game
theory, which has its roots in economics. Modern game the@y first introduced by
von Neumann and Morgenstern [1947] and quickly became alaofmol in explaining
and predicting behavior of groups of rational decision maplayersin game theory
terminology) when their well-beings are associated withjtint actions of all decision
makers (players). If each subproblem is associated wititebmf a player in the game,
and the objective function value is viewed as@mmon payofffor every player, the
original optimization problem can then be represented game of identical interests
The notion of a solution to a game is that of a NE, which for a gafidentical interests
can be viewed as a coordinate-wise local optimum. Thuseaasbf searching for an
optimum for the original problem, after we successfullyntan optimization problem
into a game, we search for the NE.

4.1 Searching for the NE

For games with large numbers of players, trying to locate adNEvery challenging
task. The most critical issue related to computing a NE,esstkponential growth of the
size of a game in the number of players. In some real-worlagngkas, we may have
tens of thousands of players. Storing payoff values fortaditegy profiles is impossi-
ble in these cases, let alone searching for a NE with the payatfices. Therefore, the
algorithm we used in searching for a NE in a game should egglor payoff matrix in-
crementally, thus avoiding having to retain the whole pagdtrix (which is impossible
in large games) from the very beginning.

In this thesis, we will use a simple-to-implement iteratalgorithm which is a varia-
tion of Fictitious Play (FP). Convergence results for thealgdrithm and its variants are
stated in Monderer and Shapley [1996] and Lambel. [2005]. We refer interested
readers to Lambest al. [2005] for a complete treatment. Besides FP, McKelvey and
McLennan’s work on GAMBIT [1996] is an excellent reference Yarious computa-
tional methods for finding NEs.

23

The intuition behind FP lies in the theory of learning in gamén a classical FP
process (see, for example, Brown [1951]), every playerrassuhat other players are
playing unknown stationary mixed strategies, and triesaor them iteratively. The esti-
mates of the unknown stationary mixed strategies are repted adelief distributions
or beliefs and are shared among all players. The belief distribuboplfayeri is a mixed
strategy calculated by finding the relative frequency ofafitegies from the history of
its past plays. During each iteration, each player findgdést replyagainst the belief
distribution of other players (i.e., its belief of how theyllwplay). These best replies
are then included in the history of past plays and the bededsupdated accordingly.
To start the FP process, an arbitrary joint strategy is usdte FP algorithm doesn’t
converge to equilibrium in general. However, for games ehiital interests, as in our
case, the sequence of beliefs generated by the FP algonthguaranteed to converge
to equilibrium [Monderer and Shapley, 1996].

The best reply operation of the classical FP algorithm pediabove is too compu-
tationally expensive to implement in practice. Lambetrtal. [2005] thus suggested a
variant they calledsampled fictitious playSFP) that is computationally practical. SFP
is very similar to FP except the best reply evaluation in eéstation is done against
samples randomly drawn from the belief distribution indtethe belief distribution it-
self. A convergence result for SFP with gradually incregsample sizes is proved in
Lambertet al.[2005]. In practice, however, samples of size one are ofted @t each
iteration.

The SFP algorithm, with sample size one, is described below:

1. Initialization: An initial joint strategy is chosen arbitrarily. It is thetoged in the
history.

2. Sample: A strategy is independently drawn from the history of eadyeir (i.e.,
for each player, each past play is selected with equal pilityab

3. Best Reply: For every player, the best reply is computed by assumingthather
players play the strategies drawn in step 2.

4. Update: The best replies obtained in step 3 are stored in the history.
5. Stop? Check if the stopping criterion is met; if not, go to step astvise stop.

The pseudo-code for the SFP algorithm and the sampling stibeass listed in Fig-
ure 4.1. This pseudo-code is specified for a game Withlayers. HereD andB are
P-dimensional vectors whose components contain individtrategies of the players,
and ()T denotes the transpose operatidt.is a “history” matrix, whereH (k, j) rep-
resents playej’s best reply in the:™" iteration. NotatiorH (k, :) represents thé™" row
of matrix H, while H(:, j) is the column containing the history of past plays of player
j. This representation of the history allows convenient ss¢e relevant information for
sampling in step 2.

Algorithm 4.1 implements the SFP algorithm in a straightfard way. Line 1 gener-
ates an initial solution (joint strategy) by calling furasti INITIAL SOLUTION, thus pop-
ulating the0™ row of history matrixH. Line 4 performs uniform sampling from each

24

ALGORITHM 4.1: SFP

1: H(0,:) < INITIAL SOLUTION()

2: k<0

3: while STOPCRITERION() is false do
4: D« SAMPLE(H, k)

5. B« BESTREPLY(D)

6: H(k+1,:)«B”

7 k—k+1

8: end while

D = SAMPLE(H, k)
1. for j=1to Pdo
2. u < DISCRETEUNIFORM(0, k — 1)
3 D(j) —H(u,j)
4: end for
5: return D

Figure 4.1: Sampled Fictitious Play (sample size 1).

player’s history independently. Line 5 computes a bestyr&plo the sampled decision
D. Line 6 append® at the end of the history matrid. Note that except fok = 0,
each rowk of matrix H stores best replies computed in iterationThe above three lines
are then repeated untirf® PCRITERION returnstrue. Since the BESTREPLY subroutine
simply solves a collection oP one-dimensional optimization problems whose input is
the sampled decisioD, it can be executed in parallel. As we will see in Chapter 8, th
parallelization of the best reply computation is the mogiomant feature that makes SFP
algorithm efficient.

Although this is not explicitly specified in the general pdetcode, we will keep
track of the “incumbent” solution, i.e., the pure strategyhvbest performance observed
so far, throughout the algorithm. At termination, the SFgoathm returns the current
and therefore best incumbent solution.

4.2 Remarks

The SFP-like algorithm was first implemented and used as &mization scheme
by Garciaet al. [2000], who applied it to a dynamic traffic assignment prahléVhen
compared to previously established methods, the SFP #igowas able to obtain solu-
tions of the same quality significantly faster. However, @#st.amberet al.[2005] who
formally introduced SFP and established related convesyessults. Based on this work,
Lambert and Wang [2003] further demonstrated the effegtige of the SFP algorithm
as compared to simulated annealing for a communicatiompobtiesign problem.

We are well aware of the fact that in order to best solve spamiplications, empirical
tunings, which usually involve domain-specific knowledgee required. In this thesis,

25

however, we are interested in proposing SFP as a generalagprso that it can easily
be implemented and used on a variety of problems.

The next two chapters address two important issues in udiiyes a general op-
timization tool. First, given an unknown black-box type @tfjve function with finite
discrete variables, we are interested in setting up thel@mobo that SFP can be used as
a standard tool. The following concerns must be addressediar to achieve this:

e How can we formulate the problem as a game?
e How should we define each player€£BTREPLY function?

e How can we take advantage of the parallel nature of the dlgofi

Second, SFP is by construction an algorithm that only worksronstrained problems.
We are interested in extending it so that it can also be usembpstrained optimization
problems. Chapter 6 presents a case study on approximaérsglution to the stochastic
dynamic programming, and it is shown that with proper fdasipace transformation
technigues, SFP can also be used in solving some constiaioklgms.

26

CHAPTER 5

Optimizing Large Scale Simulations by Parallel
Computing

As discussed in Chapter 4, we are interested in establishiiiyas a general opti-
mization tool. In this chapter, we look at a case study on tiwdinated traffic signal
control in a large network. By using this challenging problas an example, we show
important steps in using SFP. Also, we address a criticakigse., parallel implementa-
tion, in using SFP on real problems.

This chapter is organized as follows. Section 5.1 introdube problem of coordi-
nated traffic signal control. We state why it is importantyitis hard, and what we can
do about it. Section 5.2 formally describes the coordinateffic signal control prob-
lem, defining terminology and the problem in detail. Secédhpresents the coordinated
traffic signal control problem in game-theoretic terms, arglains the details of the al-
gorithm’s implementation. In Section 5.4, the test case rasdlts of experiments are
discussed.

5.1 Introduction

Since Webster and Cobbe [1958] first published their rebeamqre-timed isolated
traffic signal control, significant progress in traffic sigoantrol has been made. With
the introduction of advanced computer, control, and comoation technologies in traf-
fic networks, signal control systems are now able to receigeemetwork-related in-
formation and respond in a more congestion-adaptive mariirem past research, we
can see that, in general, the more information a signal cbetruses, the better perfor-
mance it can achieve. However, the complexity of algoritfonslesigning signal timing
plans correspondingly grows as more information is beinlget. Another factor that
complicates the problem is the number of signalized intgises considered. In the gen-
eral case, with non-periodic signal timing plans allowdx, $ize of the problem grows
exponentially as the number of considered signals inceeaBkerefore in practice, the
tradeoff between the accuracy of the algorithm, the amotinafiic-related information
used, and the size of the network remains an issue.

27

Based upon amount of information used in the control schemexan classify re-
lated research into the following categories:

1. Offline: Pre-timed signal control schemes for both isolated anddinated sig-
nal control belong to the offline category. Since pre-timigthal timing plans are
computed in an offline manner, they can only use informateated to historical
flow statistics and network configuration. Webster’'s metfwdbster and Cobbe,
1958] and its extensions, SIGSET [Allsop, 1971], and SIGQAIBop, 1976] are
examples of isolated control methods (only a single sigedlintersection is con-
sidered). MAXBAND [Little, 1966; Littleet al, 1981] and its extensions, and
TRANSYT [Robertson, 1969] are notable examples of cootdthaontrol meth-
ods (a group of signalized intersections is considered Isameously).

2. Online: The use of sophisticated surveillance technologiesudioly inductive
loop detectors and surveillance cameras at signalizetsettgons, enables traffic
signal controllers to make use of real-time traffic inforioat This information, in-
cluding, but not limited to, vehicle counts, link volume dmk occupancy, proved
to be very useful in computing real-time signal timing pldmsboth isolated and
coordinated signal control. Most modern traffic signal cointechnologies be-
long to the online category. For the isolated control caseas Miller [1965]
who first proposed a control strategy based on online traffiermation. Other
more recent methods include SCATS [Sims, 1979], PRODYN f[ilenal., 1983;
Henry and Farges, 1989], OPAC [Gartner, 1983; Garetal, 2001], UTOPIA
[Mauro and DiTaranto, 1989], SPPORT [Yagar and Han, 19949P(dSen and
Head, 1997]. It should be noted that although many of the alwowtrol strate-
gies (e.g., OPAC, PRODYN and SCATS) are also used in coaeingontrol, the
coordinations are mostly done heuristically due to the daatbrial complexity
of the problem. Other notable research that focuses on tbelic@ted control
problem includes SCOOT [Huet al,, 1981], CRONOS [Boillott al., 1992], RE-
ALBAND [Dell’Olmo and Mirchandani, 1995], Lin and Wang [2@)) and Heung
et al. [2005].

3. Predictive: Based on offline and online information, the next promissstension
Is to come up with predictions of future network congestamng compute the signal
timing plans in anticipation of predicted future traffic citions. An example of
such an approach is RHODES [Mirchandani and Head, 2001;hdirdani and
Wang, 2005]. It uses a combination of current real-timermiation and planned
timing plans from upstream signals to predict future atsiva

Among these three categories, the control schemes withh@fihd online informa-
tion are well-studied and are widely implemented. In coriguer, control schemes that
are capable of using predictive information are still mpsttperimental and researchers
are just beginning to explore the benefits of using such métion.

The method we propose in this chapter does make use of sudlttpre informa-
tion. We rely on information on time-dependent origin-destion flows, which can be

28

used to predict link congestion in the future. We believe thigh quality predictive
information will become more and more accessible due toaleving two important
technological advances. The first important advance is figdlity estimation of dy-
namic origin-destination trip flows [Ashok and Ben-Akivd@, 2002]. The second is
the use of vehicle-based GPS systems and other vehiclertgaidchnology in vehicle
routing. With such equipment, we can precisely collect thgin-destination informa-
tion for the “smart” vehicles (i.e., vehicles outfitted wighch equipment). Also, by using
these vehicles as traffic probes, we can get better estirnhitesrent link congestions.
By combining the above two branches of research, high gquatidictive information
required by our method should become available. The firsk gfothe chapter is thus
to introduce an algorithm that is capable of incorporatimg predictive information in
computing adaptive traffic signal timing plans.

Another goal of this chapter is to address the difficulty oflfing solutions to the
combinatorial problem that arises in general coordinataifi¢ signal control. The size
of the set of solutions that need to be considered grows eqg@ily as the number
of intersections and/or the length of the time horizon cdexed increases. Moreover,
functions typically used to measure performance of the odtwsuch as, for example,
average trip time experienced by the drivers, have to baiated via computationally
intensive traffic simulators. These functions also lackdtrral properties that traditional
optimization algorithms rely upon, calling for novel metisofor searching the solution
space. Our algorithm allows for parallel execution, whicikes real-time signal control
possible even in a large network. The applicability of oupraach (calledCoSIGN,
for “Coordinated SIGNals”) is demonstrated by a test caséysbased on the real traffic
network of Troy, Michigan.

5.2 Traffic Signal Control Problem Formulation

We consider the problem of finding an optimal coordinateffitraignal plan for a
group of signalized intersections over a given time horiZzoproblem instance is defined
by specifying the topology of the traffic network, the timeriaon, as well as the time-
dependent origin-destination flows over this time horidarparticular, for every origin-
destination pair in the network, the timing of vehicles’ degpres from the origin for the
destination and the route it takes are presumed to be knowe.gdal is to minimize
the average travel time experienced by all drivers in thevoit during the given time
horizon (we use the terms “driver” and “vehicle” interchaagly).

We formulate this coordinated traffic signal control prablas a discrete optimization
problem, where the planning horizon is divided id{atime periods of equal length of
seconds, and the decision variables aresiljaal phas€e'sprevailing during each of the
N time periods, at each of thiesignalized intersections. The following notation will be
used in describing the coordinated traffic signal controbpem:

1A signal phase is a collection of traffic movements that nexgght-of-way simultaneously. Therefore,
all movements within a phase must be non-conflicting.

29

| ={1,2,...,1}: setof signalized intersections;

N ={1,2,..., N}: set of time periods (each time periodiseconds long);

S ={1,2,...,5;}: set of permissible signal phases for intersectiare I;

sin € S;: a decision variable representing the signal phase asgxtgon: during
time periodn.

The problem can be formally written as:

min AVERAGETRAVELTIME ({sis,? € I,n € N})
s.t. (5.1)
sin € S,Viel,VneN

where the mapping from the vector of decision variabfss, }, to the objective value is
represented by the functiorvARAGETRAVELTIME(-), which reflects the performance
measure we discussed above. The dependence of this fupctitlie decisions made in
the problem, i.e., the signal timing plans over the plantiogzon, is inherently complex
and possesses neither analytical representation nor kewuetural properties (such as
monotonicity or subadditivity). In effect, we are faced hwvd problem of optimizing a
“black-box” function. In particular, in our research, alinction evaluations are provided
by a traffic simulation program, as described in Section?s.3.

One immediate concern resulting from this formulation s &xponential explosion
of possible joint decisions as N and | get larger. In the woeste, all joint decisions,
with number bounded bymax;{S;})", have to be enumerated and evaluated in order
to find an optimal solution to assure global optimality. Faqractical size problem, this
is impossible. Therefore, we take the approach of seardioing high-quality locally
optimal solution instead. Still, considering the comptgxind scale of the problem, it is
not obvious how even this can be achieved within reasonabée t

5.3 CoSIGN: SFP Algorithm for the Traffic Signal Con-
trol Problem

As mentioned above, traffic signal control problems are lissalved by either re-
stricting the space of solutions by searching for pararsaitpredetermined cyclic pat-
terns, or by limiting the number of signals considerablystéad, our approach will be
to search for solutions to the full-scale coordinated digtemning problem by using the
SFP algorithm.

To solve a problem with the SFP algorithm, we must first forteilit as a game.
In the following sections, we will describe how to constraggame-theoretic model for
the traffic signal optimization problem. Based on this folation, we can then specify
the performance measure used to evaluate signal timing plachdescribe the best reply
subroutine using this performance measure.

30

5.3.1 Formulating Coordinated Traffic Signal Control Problem as a
Game

With the same notation as defined in Section 5.2, we can fatathe problem as a
game:

e Player: each tupl€i,n),i € I, n € N, is a player. LeP be the set of all players,
andP = I - N, be the number of players.

e Strategy Space:for each playefi,n) € P, its strategy space is the s&t Player
(7,n)’s decision is denoted bR (i, n).

e Payoff function: by collecting decision® (i, n) from all players, a signal timing
plan for the planning horizon is formed. By sending this plathe traffic simu-
lator, we can find the average travel time experienced byraeis, which is the
payoff function value for all players.

5.3.2 Simulation by INTEGRATION-UM

Accurate evaluation of the average travel time can be actsinggl by invoking a
computer traffic simulator. In our experiment, the simwaiis done by INTEGRATION-
UM, developed by Van Aerdet al.[1989] and modified by researchers at the Intelligent
Transportation Systems Research Center of Excellencesdttiversity of Michigan.
INTEGRATION-UM is an event-based, mesoscopic determmisaffic simulator. In
order to perform a simulation, we need to provide INTEGRANKOM with following
inputs:

e Network topology definitions. the transportation network is modeled as a directed
graph in INTEGRATION-UM. To fully specify the network topady, we first de-
fine intersections and connection points as the nodes inrtdghg There are two
types of nodes in INTEGRATION-UM: zone centroids, which dsnused as ori-
gins and destinations for the vehicle trips, and normal spdéich can be used as
intersections or connecting points. The roads are thenatkéia directed links con-
necting these nodes. Important physical properties of Bakhincluding length,
capacity, free-flow travelling spegdand the signal timing plan and the phase con-
trolling this link (if any), must also be provided.

e Traffic signal settings signal timing plans in the original version of
INTEGRATION-UM were assumed to be cyclic. Cyclic plans wepecified by
parameters that define cyclic patterns, i.e., cycle lergygen split, offset, and lost
(yellow) time. We modified INTEGRATION-UM in order to take gters’ joint
strategy as input. Note that with a short enough time pe¥jdide player model can
emulate any cyclic pattern. Unlike cyclic plans, the sigivaing plans specified

2Free-flow travelling speed of certain link is the speed dresperiences when he/she is the only user
of that link.

31

by players’ joint decisions incur lost time at intersectiamly when playersi, n)
and(i,n + 1) in two consecutive periods andn + 1 have different decisions.

e Traffic flows: INTEGRATION-UM assumes that the network is empty at thetsta
of the simulation and all the traffic entering the network engrated by multiple
“flows.” Each flow, implicitly assumed to consist only homogeus motorized
vehicles, is defined by specifying origin, destination, fiate (in number of vehi-
cles per hour), and flow starting and ending times. As meatidn Section 5.1,
this information is usually not directly available, theyed we must combine data
from several sources, including survey, real time adjustsjeand predictions, in
order to come up with reasonable estimates. This is whergaecpredictive in-
formation can really help us. With better predictive infatmon, the simulation
will better describe real traffic congestion, and this iraplthat CoSIGN will be
optimizing a more realistic traffic simulation. As a restdt, the signal timing plan
generated by CoSIGN, the gap between its performance inirtindagion and in
the real traffic network should also become smaller.

A detailed description of specifications of INTEGRATION-UMn be found in Wunder-
lich’'s PhD dissertation [Wunderlich, 1994].

We selected INTEGRATION-UM as our traffic simulator purely the basis of con-
venience of implementation, since its source code waslyeadiilable to us. We would
like to emphasize that since our system architecture isdllexvith regard to the type of
simulator used, any traffic simulator could have been useel fidne only requirement is
that it must be able to accept the signal timing plan genéiayeour algorithm as input,
and output necessary information to our solver, as desthb®w.

5.3.3 SFP with Simulation-Based Best Reply Computation

A crucial step in implementing SFP is the computation of lvepties in line 5 of
Algorithm 4.1. Since for the coordinated signal controllgem the objective function
can only be evaluated through the execution of the traffictor, the only way to accu-
rately compute each player’s best reply is by pure enunwerati all player’s strategies.
In a problem with/ intersections andV time periods, best reply computations for all
players would generally requifeV Ele S;) simulations.

In practice the number of simulations can be decreased sbatdw observing the
following facts:

1. In line 4 of Algorithm 4.1, a joint strategy is sampled. One can evaluate this
strategy (using the simulator) and pass the resulting @bgetunction value as
a parameter to the best reply function. Recall that, for gdaker, best reply is
obtained by comparing the objective function values of gmaged joint strategy
and the joint strategies obtained by substituting this gifaystrategy with other
elements of its strategy set. Since the value of the formprdsided to the best
reply subroutine(N - I) simulations can be saved.

32

2. Given a sampled joint strate@; there may exist some intersections/time periods
when there is only light traffic waiting to pass through. @irtbe performances
of all strategies of the corresponding players are likelgdorery close, best reply
computations (and hence calls to the simulator) can be sHijgr those players.
We can define a threshold, and calculate a best reply for a playeérn) by in-
voking the simulator only if its combined traffic volurhis greater tham. (In our
experiments, we used= 0, skipping best reply computations only when no traffic
was traveling through the intersection in a time period.)éWthe traffic volume is
less than or equal ta, the best reply of this player can be essentially selected ar
bitrarily. To increase the exploration of the joint stratepace, we drew a random
strategy uniformly from the player’s strategy set in thisea

To take advantage of the second observation, in additioheabjective function
value (i.e., average travel time), we need information antthffic volume at each in-
tersection during each time period, obtained from timeetelent traffic statistics for the
sampled strategy. Since this information only needs to ltailndd in the beginning of
each iteration, we distinguish between executing INTEGRIN-UM in two different
modes: mode MAX, where both average travel time and the tdependent traffic sta-
tistics are outputted, and mode MIN, where only averageetrame is outputted. (The
latter mode is much less time consuming than the former.)

SFP algorithm for the coordinated signal control problerthwimulation-based best
reply computation scheme described as above will be c@lEgslGN and used through-
out the chapter. The stopping criterion use€CwSIGN is the number of SFP iterations.

The pseudo-code for the simulation-based best reply fomaesi listed in Algorithm
5.1. Below is the list of functions used in Algorithm 5.1 (B& denotes a joint strategy):

¢ INTEGRATION-UMyn(D): the function runs the simulation and returns the ob-
jective function value.

e INTEGRATION-UMpax (D): the function runs the simulation and returns the ob-
jective function value and time-dependent traffic staisstiThe objective function
value is stored im, while the time-dependent traffic statistics data are dtoré-,

a matrix wherd=(i, n) represents traffic volume at intersectiatturing time period
n.

e RANDOM(S;): the function uniformly picks an element fro8 and returns it.

The pseudo-code in Algorithm 5.1 implements the ideas dsediearlier. A common
evaluation of the simulator in MAX mode is performed in lineHor each player, if the
traffic volume is below the threshotd(as checked in line 4), a phase of the correspond-
ing signal is randomly selected in line 17. Otherwise, tlgoathm loops through and
evaluates all phases of the signal (except the phase uBeavhich is already evaluated),
starting in line 8.

3Combined traffic volume for playeli, n) is defined as the number of vehicles that would drive past
intersection;, during time period:, suppose they are given right of way.

33

Algorithm 5.1: B=BESTREPLY(D)

1: (v,F) < INTEGRATION-UMpax (D)
2: forall s €ldo
3: forall n e Ndo

4 if F(i,n) > a then

5: VUmin < V

6: B(i,n) < D(i,n)

7: D—D

8: forall s € S;, s # D(i,n) do
o: D'(i,n) <« s

10: vs < INTEGRATION-UMyn (D)
11: if vy < Umin then

12: Umin < Us

13: B(i,n) « s

14: end if

15: end for

16: else

17: B(i,n) <—RANDOM(S;)

18: end if

19: end for

20: end for

21: return B

Figure 5.1: Simulation-based best reply function.

34

Notice that whenever the simulator is executed in either lHMAX modes, we will
be able to read the performance measures and thereforeetpdahcumbent pure strat-
egy. This best pure strategy will be delivered as the saluicthe end of the algorithm
execution, as described in Section 4.1.

5.4 Case Study: Troy, Michigan, Network

In order to test performance of the CoSIGN algorithm, we usedalistic traffic
network model built by Wunderlich [Wunderlicgt al,, 2000; Wunderlich and Smith.,
1992; Wunderlich, 1994]. This case study model has beenmmbsd based on the real
traffic network of Troy, Michigan, and, to ensure fidelity,retully calibrated against
empirical measurements. To maintain this fidelity, we dittmodify the model in any
way except to insert the signal timing plans we generated.afs sBnapshot of the Troy
network is shown in Figure 5.2. The corresponding model efriatwork topology is
shown in Figure 5.3.

T yepdan DY
s] 1 |
]
=} T T) A
1

E 14 Mis Rl
R

Figure 5.2: The snapshot of Troy’s area map.

Here are the parameters used in our experiments:

Length of the time period) = 10 seconds

Number of time periodsN = 720

Number of signalized intersections:= 75

Number of playersP = N - [= 54,000

35

\

(tg.i-'l-’

Figure 5.3: The Troy network topology model, composed of l, 200 nodes and 72
zone centroids that can serve as origins or destinations.

e Stopping criterion: 20 iterations of CoSIGN are executed

The original cyclic pattern of traffic sighals embedded ie thodel was used as the
initial solution. We assumed that all vehicles will followstest free-flow patAfrom
their origins to destinations.

5.4.1 Competing Timing Plans and Algorithms

The goals of this section are twofold: to demonstrate themg@l benefits of coordi-
nated traffic signal control using predictive traffic infation (as discussed in the Intro-
duction), as well as evaluate the effectiveness of our @lgaoic approach, the CoSIGN
algorithm, for this task. Towards these goals, we compar@8IGN to the following
alternatives:

e Static: fixed cyclic signal timing plans were supplied by the cityToby and em-
bedded in the original model. When implemented, these ktgneng plans were
defined by cycle time, offsets, and phase splits. Sincetmga&-signal plan opti-

4The fastest free-flow paths are computed with the assumittairiree-flow speeds prevail on all links
over the planning horizon.

36

Algorithm 5.4: CD()

1
2:
3:
4:

10:
11:
12:

DY «— INITIAL SOLUTION()
k—0,p—1,u«1
while v < P do

4, «+ BESTREPLY, (D")
Dk+1 — (§p7Dlip)
if D! = D* then
u=u+1
else
u=1
end if
k—k+1,p«— (pmodP)+1
end while

Figure 5.4: Coordinate Descent (CD) algorithm.

mization was not available in Troy at the time the model wak, libese plans are
kept constant throughout the planning horizon.

e Automatic Signal Re-timing (ASR): although real-time signal timing plan opti-
mization was not available in Troy when the model was coettd) the
INTEGRATION-UM simulator provides an automatic cycle artthpe split opti-
mization tool, which can be used to evaluate the potentiphitchof such schemes.
When the tool is turned on, cycle lengths and green splitdl atgmals are recal-
culated at user-specified intervals, using current trafficime information. For
detailed description of this algorithm, refer to Appendix A

Since static and ASR timing plans control each signal inaisoh, the benefits of

coordinated signal control can be demonstrated by comp&@a$IGN to static and ASR
control schemes. This comparison is conducted in Sectib2 5.

e Coordinate Descent (CD) a straightforward way to solve a discrete optimization
problem of the form (5.1) is to start with some initial sottj loop through all
variables (i.e., coordinates) one by one, and solve eadiesvariable problem
while keeping the values of all other variables fixed. Thailtefsom the single-
coordinate optimization is used to update the current golutThe process stops
when a solution cannot be further improved after loopingtigh all variables. In
our setting, CD can be formally implemented as follows (li2felenotes the joint
strategy at iteratioh, (s,, D* ,) denotes the same joint strategy with the strategy of
playerp replaced by,, and the subroutine BSTREPLY,, evaluates the best reply
strategy for playep only):

The stopping criterion in line 3 of CD is based on the numberaofsecutive non-
improving iterationsy. If u = P (recall thatP is the number of variables in this
problem), the objective function value cannot be improviédrdooping through
all P variables, and thus we stop.

37

The CD algorithm by construction considers coordinatedaiggming plans, thus we
also expect it to enjoy the benefits of coordination, as CoE#Ges. However, CD is a
“serial” algorithm in that it considers the variables segfigdly, with the output of one
single-variable optimization serving as an input into tegtrone. In a real traffic network
(like the Troy network), where the number of variables igéand the time required to
invoke a single simulation is non-negligible, the time regd to obtain any significant
improvement through running CD algorithm may be prohilgiyjmong. To demonstrate
the benefits of parallelization, we will explore the podgipiof parallel execution of
CoSIGN and compare it to CD in subsections 5.4.3 and 5.4.4.

5.4.2 Benefits of Signal Coordination and Predictive Infornation

Results of experiments comparing CoSIGN to the static and si§nal timing plans
can be seenin Table 5.1. The performance measure is thgyavemael time experienced
by all drivers in the traffic network, evaluated by INTEGRA&MN-UM. For thenormal-
flow casetaken from Wunderlich’s model, around 26,000 vehicles vedi@ved to flow
into the network from the beginning of the simulation to th&" minute mark. This
traffic volume, as well as the flow patters used in our expeaniseare consistent with
the traffic patterns observed in Troy at the time the model eaasstructed. After the
inflow was stopped, the simulator was allowed to run an aaldhti 96 minutes in order
to clear all traffic. To evaluate performance under difféteaffic conditions, we created
two similar scenariodjght-flow caseand heavy-flow casewvhere the same traffic flow
pattern and time horizon were used, but the flow rate was dsede(increased) B0%,
so that approximately 13,000 (39,000) vehicles were altbtedlow into the network.

Table 5.1: Performance of three competing algorithms

Avg. travel time (min.)

Light flow Normal flow | Heavy flow

Static 10.1 (+13%)| 19.4 (+29%Y| 43.8 (+58%)

Best ASR 9.4 (+5%) | 17.2 (+14%) | 38.2 (+38%)
Best | 8.8 14.9 25.9
CoSIGN*| Mean | 8.9 15.1 27.6
Worst | 9.0 15.3 29.8

@ Average travel times are used for performance comparisen pu
pose.

b Fifteen independent CoSIGN runs are executed in all flow, sce
narios, and best, mean and worst are obtained accordingly.

¢ The number in each cell is corresponding average travel time
(in minutes) for that case. The percentages listed in row-“St
tic” and “Best ASR” are margins computed with “CoSIGN —
Mean” as base. For example, +29% in Static-Normal flow cell
means that the average travel time of static timing planeund
normal flow, is 29% more than that of CoSIGN on average.

38

Note that as depicted in line 4 of Algorithm 4.1, a random danip drawn from
the history during the beginning of each iteration. Thisd@nness makes CoSIGN a
stochastic algorithm. Therefore, to assess performanGo8tGN, we report summary
statistics (mean, best and worst values) of solutions fdund5 independent runs of
CoSIGN on each problem instance. Although there is someabitity in quality of
obtained solutions, stemming from the stochastic natutbeo&lgorithm, CoSIGN finds
a signal plan that significantly improves on the startingioh in each instance.

Table 5.1 compares average travel times of signal plansdfoyrmultiple CoSIGN
executions to that of a static signal plan and the one found®R. From Table 5.1
we can see that the plans found by CoSIGN (both on average\amdie the worst
case) perform better than the other two, under all flow caovlt and the margin of
advantage increases as flow gets heavier. Since the stgtéd 8ming plan is not adaptive
to traffic conditions, this result is to be expected. As far &SR algorithm, although
it is responsive to the real-time traffic condition, its urgieg assumption is that the
network is undersaturated, and this condition is moreyikelbe violated in the heavy-
flow case than in the light-flow and normal-flow case. This $etadrelative deterioration
of performance of the ASR approach in the heavy-flow case.

195

19F

18.5F

18

1751

Average travel time (min.)

2 4 6 8 10 12 14 16 18 20
Iterations

Figure 5.5: The evolution of best values as a function oatien count for the normal-
flow case.

It should also be noted that in the ASR implementation withiREGRATION-UM,
the interval between signal re-timings is a user-specifi@@meter. Our experiments
with various settings of this parameter demonstrated it€@rimportance to the perfor-
mance of ASR. Results reported in Table 5.1 reflect the pmdoce of ASR with the
re-timing interval that was empirically found to be the besteach experiment. (These
“best” intervals had different lengths under differenfficaconditions, and we found no
discernible pattern of dependence of the method’s perfocen@n the interval length;
e.g., more frequent re-timings did not necessarily leadyarovements.) In other words,
the reported margin of CoSIGN over ASR is a conservative dpand in practice, with
re-timing intervals determined mostly ad hoc, this margithlve much larger.

In Figure 5.5, we plot the evolutions of mean best value @yetravel time of current

39

10.2

10-

9.81

9.6

9.4r

Average travel time (min.)

9.2r

8.8
0

2 4 6 8 10 12 14 16 18 20
Iterations

Figure 5.6: The evolution of best values as a function oatien count for the light-flow
case.

Average travel time (min.)

1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20
Iterations

Figure 5.7: The evolution of best values as a function oétien count for the heavy-flow
case.

incumbent solution) versus iteration number for the notfital case. Similar evolutions
are drawn for the light-flow and heavy-flow cases in Figured@n@ Figure 5.7 respec-
tively. Figures 5.5, 5.6 and 5.7 motivate our choice of te@ting CoSIGN after 20
iterations: most of the improvements were achieved witha first 10 iterations, and
improvements aroun20™ iteration were small.

Another interesting statistic we observe in these comjmurtat experiments is the
average travel time experienced by drivers leaving thegims at different times. For
all three flow scenarios, we consider 24 groups of vehiclesyged according to their
departure times, where th# group contains vehicles departing within tifeminute.
For each such group, the average travel time of all vehiclése group is then plotted
as a data point. In Figures 5.8, 5.9, and 5.10, average tiaves$ of each group for each
control scheme are plotted against all possible departumetes (,2,...,24). From
these figures we can conclude that as flow grows heavier, QbPKEforms relatively

40

better than the two alternatives.

11.5

[N

© o

3] 3
T

©
3]
T

Average travel time (min.)

751

——CoSIGN
- — - Static
ASR

6'50 é 1‘1 é é lb 1‘2 1‘4 1‘6 1‘8 2‘0 2‘2 2‘4
Departing time (min.)

Figure 5.8: Average travel time as a function of vehiclepaléing time, for the light-

flow case.

N
ol

= N

= N N N

a o =] o
T :

Average travel time (min.)

[N
g
3]

——CoSIGN |4
- — - Static
ASR

=
o
T

7'50 2 1‘1 é é 16 1‘2 1‘4 1‘6 £8 2‘0 2‘2 2‘4
Departing time (min.)

Figure 5.9: Average travel time as a function of vehiclegalting time, for the normal-

flow case.

5.4.3 Parallelized Implementation of CoSIGN

We have demonstrated the benefits of a coordinated sign@abtalgorithm that takes
into account predictive traffic information in the previaigsection. However, another
important consideration is the time required to executé smalgorithm. In a straightfor-
ward serial implementation on a Pentium-4 2.8GHz PC with 28/, running RedHat
Linux, 20 iterations of CoSIGN took 169.04 hours for the nalflow case, and 397.6
hours for the heavy-flow case.

Since CoSIGN is expected to be responsive to current traffiditions and forecasts,
its execution time should be short enough to fit into the @esilpdate interval. One way

41

Average travel time (min.)

. ——CoSIGN
15+ // — — - Static
ASR

2 4 6 8 10 12 14 16 18 20 22 24
Departing time (min.)

Figure 5.10: Average travel time as a function of vehiclepakting time, for the heavy-
flow case.

to significantly reduce the “wall-clock” running time withbsacrificing the precision or
scope of the solution is through parallelization. In thibsection we will describe how
to parallelize CoSIGN and discuss the impact that degreeadllglization has on the
running time of the algorithm.

As mentioned earlier, computation between line 2 and line Bdgorithm 5.1 can be
parallelized. WithK identical CPUs available, we can divide the best reply atadns
for all players intoK tasks, and assign each task to a CPU. Each task will take the
sampled joint strategyp, its associated objective value, and the set of player,,
as input parameters. The output of each task will be the legdies, B;, for players
in P;. Note that sincé Ji_, P; = P, we have{ JI | B; = B. Regardless of the degree
of parallelization, as long as samples drawn in line 4 of Akthon 4.1 and in line 17
of Algorithm 5.1 remain the same, CoSIGN will evaluate thmeaset of solutions and
return the same output.

In order to asses the impact of parallelization without résg to repeatedly re-
running CoSIGN on clusters of CPUs of various sizes, we atst@nalytically relate
the running time of CoSIGN to the degree of parallelizatimgl rely on a single run of
CoSIGN to make performances estimates.

We will use the following notation:

Suax: time required to execute INTEGRATION-Upx (-)
SMIN time required to execute INTEGRATION-UM\ (-)
P: number of players
Ncosicn: number of CoSIGN iterations exe-

cuted (Veosicn = 20 in our imple-

mentation)
K: number of available CPUs

In our calculations we neglect time spent on communicatiitsreen CPUs and sam-

42

plings in the implementation of CoSIGN since the time spensionulations dominates
total execution time. Also, we assume that at every itenatidtasks for best reply eval-
uation are created in a balanced manner, i.e., they reqome@ximately equal time for
execution.

In BESTREPLY function, one call to INTEGRATION-UMax (-) and at most
(N1 (S; — 1)) calls to INTEGRATION-UMy (-) will be made. LetPr be the num-
ber of calls made to INTEGRATION-UM\ (+) in one iteration. The wall-clock running
time of BESTREPLY function with X CPUs utilized as described above is bounded above
by

Pr

Tsr < Swax + [?—‘ SMIN (5.2)

(this is an upper bound since, as discussed in section B&sBreply computations are
skipped for some of the players). Therefore, the total whaltk running time ofVeosion
iterations of CoSIGN will be

T(K) = NCOSIGN'TBR

P,
Ncosien (SMAX + [—T—‘ SMIN) . (5.3)

IA

K

To obtain a tighter bound, I€2, be the average number of simulations actually used per
iteration, after we consider the savings described in suloge5.3.3; we can then replace
(5.3) with

P

Py
T(K) = NcosicN (SMAX + ’V?—‘ SMIN) ~ Ncosien ’V?-‘ SMIN- (54)

In the Troy test case with normal traffic flows, we observedrdpa typical run of
CoSIGN (with Ncosion = 20) Suin = 1.3 seconds and®, = 21,582 (note that this is
about a60% reduction in the number of simulations). Hence (5.4) becme

21,582 21,582| 1. .
o8 w 1.3 seconds= 20 [jw 6_(:))) minutes (5.5)

T(K) < 20 [-

For instance, forX = 134, 70 minutes of wall-clock computation time will be needed to
execute CoSIGN. FoK = 256, the required time is 37 minutes, and fer= 1024 —
just 9 minutes. We chose these illustrative value& @fince such computational facilities
are readily available at educational institutions suchhasUniversity of Michigan and
University of Texas. To give the reader a broader sense afrtpact that different degrees
of parallelization have on the wall-clock time required bgSIGN, we plotted (5.5) in
Figure 5.11.

To demonstrate that parallelization is indeed feasibleimmemented a parallel ver-
sion of CoSIGN on cluster systems managed by the Center feambd Computinat
the University of Michigan. The specifications of the clustgstems are as follows:

Shttp://cac.engin.umich.edu

43

100

90

80

701

60

50

T (minutes)

401

30

201

10-

0 1 1 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000 1100 1200
K (number of CPUs)

Figure 5.11: Running time of CoSIGN versus degree of pdizdigon K .

e morpheus: the 208 processor Athlon cluster is composed afatés of dual
Athlon 1600MP CPUs, 29 nodes of dual Athlon 2400MP CPUs, ahchédes
of dual Athlon 2600MP CPUs.

e nyx: the 450 processor Opteron cluster is composed of 22&swictual Opterons,
ranging from Opteron 240s (@ 1400 MHz) to Opteron 244s (@ 13B@).

In our experiments, the typical number of processors usadaitier 8, 16, or 32, due
to the job scheduling policy.

Note that these systems are equipped with CPUs slower tleaarth we have run
our serial experiment on, therefore the curve in Figure $sliot directly applicable.
However, a corresponding plot for running time versus de@feparallelization can be
easily reconstructed by measurifigy on each system.

One of the main assumptions in our derivation is that the spent on communica-
tion can be neglected. We verified this assumption by loo&irtge timing analysis from
our parallel experiments. We observed that in all caseg¢heentage of time spent on
communication is less than 0.005%. Therefore, at least ircouent experiments, the
communication time is indeed negligible.

5.4.4 Relative Performance of Parallelized CoSIGN vs. Codinate
Descent

As noted in prior sections, CoSIGN is a heuristic that sezs¢br an optimal solution
to the coordinated traffic signal control problem. Althougé have empirically shown
the algorithm’s benefits based on a realistic test caseptbéan found in 20 iterations is
not guaranteed to be an optimal solution to the problem, evére local sense. In fact,
while the average vehicle travel time in the normal flow cass #5.60 minutes under
the signal plan found by CoSIGN, the Coordinate Descent (&@9rithm described in
Section 5.4.1, given sufficient time, found a plan with ageréime of 13.13 minutes. It

44

should be noted, however, that it took CD 362,500 iteratawes several days of running
time to identify this solution.

A meaningful way to compare practical performance of anyheoristic algorithms,
such as CoSIGN and CD, on a problem is to compare the objedlues of solutions
they find given the same amount of wall-clock time. As we desti@te in this section,
as the number of processors made available to CoSIGN iresgeiss wall-clock running
time decreases, and the quality of solutions found by CD énsidime time deteriorates
dramatically.

As in the previous subsection, we do not resort to multipg@athm runs, but rather
use analytical estimates of running times of CD and CoSIGpé&téorm the comparison.

Recall that the CD algorithm is initialized with some initslution, and in each step
afterwards, uses a simulation to evaluate the current ptagiéernative decision. In each
of these steps, the solution will be modified if the curremtypl’s alternative decision
improves the solution. As this process suggests, the CDidlgocannot be parallelized
and must be executed serially. Therefore, the wall-clogletrequired to execut®cp
iterations of CD is

(Ncp + 1) Suin- (5.6)

(We did not invoke the threshold test to bypass potentiailyacessary simulationsin CD
since that would require running INTEGRATION-UMyx at every iteration. Sinc8yax
exceedsSyn by 50% to 150%, depending on the number of vehicles in thearévthe
added computational effort would outweigh potential sgsih

Let Nep(K') denote the number of iterations CD would be able to perforitmire
allowed the same amount of wall-clock time as it takes to et o5y iterations of
the parallelized CoSIGN algorithm running on a clusterfofprocessors, i.eJ'(K).
Setting(Ncp(K) + 1)Suin = T'(K') and using the formulas above, we obtain:

Ncosion(Smax + [Pr/K] - Suin)

Nep(K) < —1
SMIN
Smax Pr
NeosioN <—SMIN + [?-D — 1. (5.7)

(Recall thatPr = NZle(SZ- —1).) Once again, ifP; is the actual average number of
simulations used per iteration by CoSIGN, we can obtaintaeigoound:

S P,
Nep(K) < NCOSIGN(MAX ¥ [—-D — L (5.8)
SMIN K
In the Troy test case with normal traffic flowd,s6n = 20, and P, = 21,582, and
the numeric form of (5.8) becomes:

SMAX 21,582 21,582
Nep(K) <2 —1=2 . 5.9
(k) < 0<5MIN+{ K D 0{ K W (:9)

The number of iterations CD will be able to complete in the saamount of wall-
clock time as CoSIGN is inversely proportional to the numbieprocessors available
to CoSIGN.

45

As mentioned in the beginning of the section, we did perfonamulti-day run of CD
for the normal flow scenario in the Troy network. We can now pane the performance
of the algorithms as follows: for a particular value &f we estimateNcp(K) based
on (5.9) and consult the output of the CD run to obtain the ayettravel time for the
signal plan found by CD iNcp(K) iterations. The resulting comparison is presented in
Figure 5.12, where we plot the average travel time of sahstiound by CD inNcp(K)
iterations versugs for the normal-flow case. A similar graph for the heavy-flovsea
is plotted in Figure 5.13. (These graphs may appear a bittedatuitive at first, as the
increase in the number of CPUs results in worse objectivetiom values found. To
interpret these graphs, recall that addition of CPUs deeethe amount of wall-clock
time allotted to CD, allowing for fewer iterations and lesegress.) For comparison, the
average travel times of 15.08 minutes (for the normal floverasd 27.62 minutes (for
the heavy flow case) obtained by CoSIGN are also plotted osetime graph. (Recall that
these are the mean performance measures of solutions fguseVéral runs of CoSIGN
on each problem instance.)

20

19-

= P I~
=) ~ ©
T T T

Average travel time (min.)

[
&
T

-
S

—CD
- - -CoSIGN

100 200 300 400 500 600 700 800 900
K (humber of CPUs available to CoSIGN)

13
0

Figure 5.12: Average travel time of solution found by CD wigeren the same wall-clock
time as the parallel execution of CoSIGN withprocessors, vs. K.: for the normal-flow
case.

As Figure 5.12 indicates, CD underperforms CoSIGN in thimparison if the latter
is allowed 26 CPUs or more. Moreover, if CPUs number in thednels, CD makes
almost no progress from the initial solution in the time kda CoSIGN to complete its
run. Similar result can be observed in Figure 5.13, where @detperforms CoSIGN in
this comparison if the latter is allowed 16 CPUs or more.

Even though in the long (very long!) run CD found a better soluthan CoSIGN,
since wall-clock times available in practice are limitelae fparallelized CoSIGN algo-
rithm will always be superior to CD in practice. Since CD isialnerently sequential al-
gorithm, multiple available CPUs can be utilized by runn@ig for the specified number
of iterations starting at different initial solutions onceaCPU and reporting the best so-
lution found. However, based on our empirical experiend&n@kes very slow progress
in each iteration. Therefore, it will not in fact achieversficant improvement over the

46

Average travel time (min.)

24 —¢CD b
- - -CoSIGN

100 200 300 400 500 600 700
K (number of CPUs available to CoSIGN)

Figure 5.13: Average travel time of solution found by CD wigeren the same wall-clock
time as the parallel execution of CoSIGN wikh processors, vs. K.: for the heavy-flow
case.

starting points it is provided.

a7

CHAPTER 6

Approximate Large-Scale Dynamic Programming: A
Special Case

Chapter 5 suggests a general parallel implementation ob&fefithm for solving un-
constrained discrete optimization problems. Howeverpteesconstrained optimization
problems, we have to modify the original SFP procedure. Ttrpgse of this chapter, is
to provide an example on how this can be achieved. The beriéi#ing able to quickly
solve large problems later becomes clear when we use thersepeatedly to solve in-
stances generated by modifying problem data in a contrali@aner. It is shown that we
can obtain managerial insights by using this numeric aproa

This chapter is organized as follows. Section 6.1 desctibedackground and the
importance of the joint optimization problem in productigystems. In Section 6.2, we
formulate the joint optimization problem as a Markov demmsprocess. In Section 6.3,
we formally state how the game-theoretic approach can bkedpp solve the original
Markov decision process. In Section 6.4, we discuss thdtsaginumerical experiments
and how we can use our approach to develop managerial guedek-inally, Section 6.5
concludes the chapter.

6.1 Introduction

Automotive original equipment manufacturers (OEMs) aethwith the challenge
of significantly increasing efficiency to offset net vehipléce reductions and increasing
benefit costs. At the same time, ever increasing consumecdons of responsive-
ness and customization are driving a need for operationabiley. Management must
carefully weight these competing goals when making deessimn capital investments,
pricing, and operational policies.

In this chapter, we focus on addressing the problem of ofiiynravesting capital in
new production facilities and equipment. Thus, the first #egision to be made is: 1)
What equipment to installPhis involves determining the number, capacity, and fléxibi
ity of production lines. These decisions are governed bytamts on available capital

48

and must factor in forecasts of future demand patterns.ofitfh demand for a vehicle
model depends on dynamic exogenous factors such as ecoommaitions and consumer
trends, it can be partially controlled by adjusting theisgllprice. This introduces the
second key decision: 2)hat should be the selling price of each vehicle modéiese
prices, combined with the dynamic exogenous economicifacyteld demands for each
vehicle model. These demands in turn drive production requénts. Thus the third key
decision is: 3What are the productions targetd®ote that even if production meets or
exceeds demand, it may not always be optimal to fulfill all dads. For example, it
may be preferable to stockpile inventory of some modelsdp fegher selling prices due
to seasonality effects. Thus the fourth key decision ildyv many vehicles should we
sell? Note: Although OEMs generally do not hold inventory and boekenue as soon
as vehicles leave the plant, they do incur some dealer ioxenbsts through discounted
inventory financing. Consequently, the dealer network @dndl conceptually viewed as
an extension of an OEM.

The optimization problem described above is hierarchicaldture, involving deci-
sions at strategic, tactical, and operational levels bigifit decision-makers. Higher-
level decisions constrain and set the context for loweellevhile the potential results of
lower-level decisions in turn impact higher-level dearsioDue to their different levels in
the decision hierarchy, each decision may have its own twyianging from very long
for strategic decisions such as capital investment to citet for operational decisions
such as production levels. The joint optimization problemitremely complicated, and
it is not clear how to make optimal decisions.

To understand the problem abstractly, we will first estélbisnathematical model
that approximates the joint optimization problem. It slibloé noted that when formu-
lating the problem, a high level of fidelity is not our top prtg as this would require
consideration of an inordinate number of uncertainties el6 & numerous exogenous,
qualitative, and strategic factors. Even if such an optatian problem were tractable,
the required data - much of it stochastic in nature — woulddoeedingly difficult to col-
lect. Instead, we propose simpler models for which data ctuafly be obtained, with
the goal of generating strategic and operational insidtdgsrmay be effectively used by
decision-makers to improve performance. In order to olstaah insights, it will be desir-
able to repeatedly solve the problem with controlled probtiata, so that we can observe
the correlations among important system features. To rheeénd, our algorithm must
be efficient enough in solving single problem instance, abwhthin reasonable amount
of time, we can collect necessary amount of data for testimgus hypotheses about the
system.

As we will see in the later sections, even the simplified modelproposed is very
difficult to be solved exactly. Thus the first issue we mustragslis how to efficiently
solve the problem, either exactly or approximately. Andhé problem is solved approx-
imately, how far is it from the real global optimum.

In practice, as more and more desired features being addled todel, it will even-
tually become impossible to describe the model analyticatid a simulator has to be
used. Therefore the second issue we must address is to nrakihauthe algorithm we
choose is capable of optimizing a black-box simulator besainicely formed function.

49

There has been arecent boom in the revenue managementsiryveontrol literature.
Research in the past has considered different forms of veveranagement. For a recent
review on this topic, please refer to Swaminathan and T&3@03]. Various researchers
have considered adaptive pricing and stocking problempegl and Snower [1988],
Subrahmanyan and Shoemaker [1996], and Burnetas and St0@0]). Petruzzi and
Dada [2002] considered deterministic demand parametebyeone parameter. Chen
and Simchi-Levi [2004a,b] considered coordinating pgcamd inventory decisions in the
presence of stochastic demand over a finite as well as artéffiarizon. Federgruen and
Heching [1999], Feng and Chen [2003], and Feng and Chen [2@0%idered similar
problems. However, to the best of our knowledge there isteoaliure that focuses on
joint optimization of investment, pricing, production asales. In this chapter we propose
to use the game-theoretic paradigm of sampled fictitiougtplpartly address this issue.
To precisely capture the effectiveness of the algorithneadity, we will include major
features of the manufacturing system, but only to the extteitthe problem can still be
solved to the optimum, so that we can compare the result ddltieithm to the global
optimum.

6.2 The Joint Optimization Problem

As described in the introduction, the joint optimizatiomiplem is composed of four
important decisions. These four decision modules are fibyrmaroduced in 6.2.1. The
modeling assumptions and the model are described in 6.2n2llyFin 6.2.3, we point
out the complexity of this problem.

6.2.1 Decision Modules

Following the description in Section 6.1, four importantideon modules are defined
as follows. Note that for simplicity, we assume that the plag horizon is discretized
into NV periods with equal length.

e Capital Investment (CI): in general, CI module will decide the type (dedicated,
reconfigurable, or flexible) and the capacity of the productine. However, to
simplify the analysis, we assume that we can only build acdd production line
that produces only one type of vehicle. Thus, only decistor®i is the production
line capacity. Unlike all other modules, where decisioresraade at each epoch,
the decision on Cl is only made at the beginning of the plaghiorizon, before
the first epoch.

e Revenue Management (RM) at then™ epoch ¢ = 1,2,..., N), the unit price
of the vehicle will be decided by the RM module. Note that ie teneral case
where we have multiple vehicle types, a price should be §pddor each type.
However, since we limit ourself to a dedicated productiowe lihat produces only
one type of vehicle, our decision for the RM module is just alac(instead of a
price vector). The pricing decision will then generate teendnd for the vehicles

50

through a demand function (may be deterministic or stoatjast

e Production Scheduling (PS) at then™™ epoch ¢ = 1,2,..., N), the production
goal for the current period is decided by the PS module. Nwethe production
goal cannot exceed the production line capacity decidetiéyt module.

e Sales Planning (SP)at then™ epoch . = 1,2, ..., N), the projected sales goal is
decided by the SP module. Notice that our sales goal may eéxtbegeal demand
in the market, in this case, our real sales will be up to theadem

6.2.2 The Markov Decision Process

When formulating the model, we would like to include most ortant features of the
problem, while at the same time avoid unnecessary comicat In our investigation,
we choose to focus on the stochasticity of the reliabilitthef production line and the de-
mand function. As discussed in Chapter 3, it is crucial tadedé the value of the feature
we want to include in the model. In the joint optimization Iplem we are dealing with
here, the validation is straightforward. Since the stosbiis on demand and reliability
level will have a direct impact on our decisions on salesdpotion planning and prod-
uct pricing, the decisions obtained by ignoring the stotibi#gg may not even be feasible
for particular instantiations of the scenario. Thereftos;onstruct a satisfactory model,
these two features must be included. These two featureg aldhmake the problem
non-trivial and difficult numerically.

Assumptions

e The planning horizon is discretized infd + 1 periods,0,1,..., N. The capital
investment decision is made at period 0. All other decisiamduding revenue
management, production scheduling and sales, are made aeginning of all
subsequent periods,= 1,2,..., N.

e We assume that the capacity of the production line can onlghmsen from a
fixed finite set, and a fixed building cost is associated witthezapacity choice.
This cost can either be paid by a lump sum deducted in periodi@can be paid
in installments. In the latter case, we assume that same rarobinstallment is
charged in each period (n = 1,2,...,N). In our model, we assume that the
building cost is always paid in installments.

¢ All the problem data and decision variables related to theme of the production
are for one shift (8 hours) only. In practice, multiple shifusually three, but in
the case where additional capacity is needed, a fourth cdniftoe arranged using
weekend time) can be arranged at the production faciligrettore the actual pro-
duction output may be several times its capacity. Howevaltipte shifts will only
complicate the computation of the cost and production dutpithout providing
much insights into the problem. Therefore, we assume oraysbiift is used in our
model.

51

The production line is assumed to be unreliable. Relighiftthe production line
can be modeled at various operation levels, from micro levehacro level. At
micro level, the reliability is modeled at station-levehdathe actual production
output in each period is collectively decided by the stausfeall stations. Since
the interaction among stations can be extremely compticatepractice we have
to use Monte Carlo simulation in order to obtain productiatpoit. At macro level,
we consider the production line as a whole and assume thatiability (and thus
production output) is governed by a probability distribuati Since we would like
to have an analytical expression for the operation of thelyetion line, we will
model the reliability at macro level.

Since the production line is unreliable and breakdown digtirppens, we will
need to staff the maintenance crew and decide proper n@imgesschedule. How-
ever, since we are viewing the reliability issue from a mamimt of view, the detail
on the maintenance of the production line will not be consdén our model.

The demand function is assumed to be stochastic, refled¢tanéntt that the mar-
ket's demand as a function of price cannot be precisely prediwhen the pricing
decision is made. To simplify the formulation, we assume Wehave a finite set
of possible demand functions, and for each period, one ilumetill be randomly
selected from this set. This set is assumed to be known tddner.

No backlog is allowed. If the current inventory plus prodoitis not enough to
satisfy the demand in some period, the demand is lost.

The manufacturing cost depends both on the line capacitytengeriod when the
production occurs.

The holding cost of carryingvehicles in the inventory in periadis a fixed fraction
of the manufacturing cost far units of products, supposing that they are to be
produced in perioa.

Notation

N ={0,1,..., N}: set of time periods.

M = {mq,mao, ..., my}: set of feasible production line capacities.
P = {pi,p2,...,pp}: setof feasible pricing decisions.

~: the discount rate.

C(m),m € M: the installment to be paid in each period for the initialéstment
of building a production line with capacity.. C'(m) is computed so that if produc-
tion line is designed to operate farperiods, the discounted sum bfpayments
equals the lump sum payment of the building cost. Eﬁbl y*~1C(m) = cost
for building line with capacityn.

52

e c(n, 2P, 2" m),n € Nym € M, 2" < 2P < m: the cost of producing” units of
products in periodk, with original production goat? and the capacity of.. The
portion of production that is planned but cannot be realtheel to machine break-
down will not incur material and component cost. Howevaigcsithe staffing of
workers is arranged a priori, the labor cost will still be ided during the break-
down. This implies that the production cost is the sum of tasts: the labor cost,
¢/(n, 2P, m), and the material and component cegt(n, =", m). c(n, 2P, 2", m) =
ca(n,z?,m) + cp(n, ", m).

e p,. As stated in our assumption, the reliability of the produetine is modeled in
a macro manner. Here we uggto represent the fraction of available production
capacity in perioch. By definition, p,, € [0,1]. We assume that in each period,
the production line can be operated at one of service leigtédlin set_, where
L = {l1,05,...,|}. We further assume that the probability that the production
line operates under certain service lekels the same for all period, and will be
denoted a$’, .

e D= {D(:),...,Dpp(-)}: the set of possible demand functions. In our model, we

assume that each elementDns chosen with equal probability. In our model, we
assume that the general form of the demand function is exp@ahewith constant
elasticity (we are using similar modeling assumptions adagertyet al.[1988]).
To simplify the pricing part of the problem, we assume that ¢imly factor that
influences the demand is our own pricing decision (thus ehatycompetitor’s
pricing and exogenous variables from the demand functibp)p) can be formally
represented as follows:

Di(p) = e*p” (6.1)
log Di(p) = «;+ Gilogp
a; € {ag,...,a.}
Bi € {B1,---; 5}

e d,(-) € D: the realized demand function in periad

e h(n,i): the cost of holding units of inventory from period: to periodn + 1.
According to the earlier assumptioh(n,i) = X - ¢(n,i,i, m), where\ is a pre-
specified constant.

The Model

The problem is a natural sequential decision process, veitistbns being made se-

quentially from period) to periodN. In period0, we make capital investment decision
m, wherem € M. In periodn > 1, the decisions for RM, PS and SP are made at
each epoch. Just as in traditional production control gwblthe information required
to make optimal decisions for PS, RM and SP is current pemaitlae level of inventory
beginning that period. In addition, since decision for Gsghe upper bound on the pro-
duction, its decisiony: should also be required in each period. This enables us toedefi

53

the state space for period > 1 as the triple(m, n,i), wherem is the capacity of the
production liney is the current period, ands the inventory entering periad

S, 10
mll 1' 0 e
my
dn realized
m Sn 1.0 —|Sn, nj, Pn realized — S L,
0 K mkyl’o _)k_> mk,n,|n ——’O—» mk,n+1,k+l——>...
Sm n,i
Rrn(,kn,i
My

My, 1,0 | Sm, 10

Sani=& .8 P) F(m,n,i)

Figure 6.1: The Markov decision model usefj, ,,; is the decision being made at state
(m,n,i). F(m,n,1) is the set of feasible decisions at stéate, n, i) and will be defined
later. The demand functiod,,, and the available fraction of the capacity, will be re-
alized after the decision is made. These two realized rangorable will then complete
the state transition. Ap, andd, realized, the rewardef;:f , is also generated and
accumulated.

After defining the states for the problem, we will define thasible decisions at each
state, the state transition function, the reward functmd finally the functional equation.
These important elements of the model are described asviliand also are illustrated
in Figure 6.1.

e At any given statém, n, i), the set of feasible decisions(m, n,) is defined by
following constraints:

m (6.2)
min{i + x,, E%%{Dj (pn)}}

Tn

IA A

Sn

0, integer
P.

Tny Sn

Pn

m v

e The state transition at state:, n, i), with action(z,, s,, p,), after the realization
of p, andd,(-), is defined by:

T, = min{z,, p,m} (6.3)
S$p, = min{s,,i+ T, dn(pn)}

Intl = U+ Ty — Sp.

54

As mentioned in section 6.2.2, we know thgte L, P(p, = ;) = P, and each
element withirD is chosen with equal probability. With these definitions &h8),
we can compute the transition probabiligy, ,, (the probability of transiting from
stateA; to A,, if actiona is taken), accordingly.

e The reward function at staten, n, 7), with actions,, ., = (z,, s,, p,), after real-
izations ofp,, andd,,(+), is defined by:

R (ppy dn(-)) = 8n - P — €(n, T, &y m) — h(n, i), (6.4)

wherez,, ands,, are as defined in (6.3).

e Functional equatiorf(-):

Forn =0,
f(0) = max {f(m,1,0) = N - C(m)}. (6.5)
Forn > 1,
f(m7 n, Zn) = max Epn,dn(-) {Rgn,n,i(pna dn()) + Vf(mv n + 17 'L.n-l-l)}

a€F(m,n,in)

P, | Rynilon dn())+ }
ST DD DR P S D
acFlmmin) 27 dn()€D D] vfmn 41, i)

wherei,, . ; can be computed by using (6.3).

It should be noted that in order to drive the model, three ingya sets of problem data
are necessary: the building cost of the production line witferent capacity, the set of
demand functions, and the manufacturing cost as a functioapacities. The details on
the problem data are described later in Section 6.4, whenewfermn our computational
study.

6.2.3 Complexity of the Markov Decision Model

Here we will try to compute an upper bound on the computatiefiart required in
solving functional equations defined above. The requiradpmdational effort is mea-
sured by the number dlops required.

Forn = 0, the number of flops required is:
OM + (M —1) =3M — 1.
Forn > 1, the number of flops required at each staten,) is:

Cr|L|ID|(Cr +Cr+2) + (Cp — 1),

Hlopsstands for floating-point operations. It is commonly usegrioviding a measure on the compu-
tational complexity.

55

whereC'r represent the size of the feasible decision/det, n, i), andCr andC repre-
sents the number of flops required to compute state transitid reward function respec-
tively. From equation 6.3, we havér = (2 + 6 + 2) = 10. From the provided problem
data, we can see that the labor cost is linear, the matesai€gonstant and both costs
are stationary. Thus from equation 6.4, we haye= (3 + 3 + 4) = 10. Therefore for
n > 1, the number of flops required at each staten, i) is:

22C5|L||D| + (Cp — 1).

Forn > 1, we can compute the range ofor each(m,n) pair: 0 < i < m(n — 1).
Therefore, for somey,, the total number of flops to compufém,., n,i),n =1,..., N,
0 <i<mg(n—1),Iis:

N

(22Cp|LID| + (Cp — 1)) Y _(mu(n —1) +1)

n=1

= (22CF[L|[D| + (Cr — 1))(muN(N — 1)/2+ N)
Total number of flops required, can then be computed as:

(BM —1)+ Y (22Cp|L|[D| + (Cr — 1))(mxN(N = 1)/2+ N) (6.7)

mi €M

< (B3M — 1)+ (22|L||D| + 1)CpM (mpyN(N —1)/2+ N),

wherem,, is assumed to be the largest capacitivin

The dominating term in equation 6.8 turns out to(b&Cr|L || D|Mm,,N?) and all
constants excejdi are well-defined either in the problem data and in the eagéetion.
To demonstrate how largé, can be, we look at the extreme case:

CF — mMDmax|P|.

Substitute it back into the expression of the bound, we h@vied .| P||L | |[D|Mm3,N?).

From above bound expression, it is obvious that the size efdhsible-action set,
Cr, is the key factor that makes this problem hard to solve iotpre. This provides the
motivation for us to approximate the problem through decositppn along action space.

6.3 Game-Theoretic Model for the Joint Optimization
Problem

With the same notations as defined in the previous sectioag;an formulate the
problem as a game:

e Players: each decision module (Cl, RM, PS, and SP) is defined as a player

will use P¢;, Pry, Pps, and Psp to represent the player for each of the decision
module.

56

e Strategy Space:in the game-theoretic model we proposed, each player must ha
some probabilistic beliefs about all other players’ betesii Each realization from
such belief on other players’ behaviors will create a redud®P, where the deci-
sion variables are only this player’s decision. Therefbeedtrategy space for each
player should be the policy space of this player. Howevedesed in equation
6.2, there are interdependencies between players’ dacidio be more specific,
from equation 6.2, we can see thits's decision relies orP:;’s decision. Simi-
larly, Psp’s decision relies on bot®rs’s and Pg,,’s decisions. Unfortunately, one
important requirement for modeling our joint optimizatiproblem as a game is
the assumption that all players select their actions sanelbusly. Therefore, no
matter what kind of beliefs each player has for all other etayit is possible that
the combined decisions from all players may be infeasible.

e Payoff function: the assignment of payoff values require feasible jointslens.
Therefore, in the case where joint decision is infeasilile payoff function is not
defined.

The feasibility issue mentioned above originates from dtenapt to model a con-
strained problem with an unconstrained model. Thus, we marssform the constrained
optimization problem into an unconstrained problem firdoke putting it in the game-
theoretic framework.

In the following section we will describe how to design profransformation in order
to turn our constrained optimization problem into an une@ised problem that can be
modeled by the game-theoretic framework.

6.3.1 Ensuring Feasibility

While implementing a game theoretic method such as ficstay or sampled ficti-
tious play to solve a complex system optimization probleng bas to ensure feasibility
of joint actions by the players. In the case of sampled fatgiplay, the concern for feasi-
bility arises from the fact that the algorithm assumes thaheplayer has a finite strategy
set that does not depend on actions of other players anddhera joint strategy cor-
responds to a point in a fixed hyper-rectangular subset oihtieger lattice. Moreover,
players sample their individual actions independentiyhaut knowing what other play-
ers have sampled from their respective strategy spacesnidy cause a serious problem
if feasibility of a particular action by a player depends dmatvother players have played.
In terms of an optimization problem, the above observatioean that the only allow-
able constraints are box-constraints with fixed lower angeufpounds on the variables.
However, this is rarely the case in most constrained opétidn problems including the
production systems optimization problem at hand. In paldi; the PS player may never
decide to produce more than the capacity chosen by the Ghipl&ymilarly, the SP player
may never sell more than the minimum of the demand decideddiRM player and the
total inventory on hand including the most recent produrctiecided by the PS player.
To handle the feasibility issues outlined here, we proposegiable transformation called
the proportional transformation

57

'\

/N N

CI RM |
capacity \ /\ production is less \ /
affects f' ‘[han capacify _— \
production sales 'ue price
throush | ', less than / affects

production edst . ! . L demand . sales |
due to scalin production affects capacity ; throuch
Y hrough ‘producti . ———
nffECTS | Thro 1.1: 1 piL 11Cction cost revanue)

N I'-. due to a;cqlincr effects " f,-":_;alec,

| . affect
- _] / price
V \i’ - ﬂlﬂs are essrh'm T a \ through

mventory on hand \ IE'\ enue

I
,.' pmductmantecr-., sales '..

\ / \\tlu ough mventory cost /\ /

-,'1103 '1ftecr ploiﬁrcrrorrfﬁmuwh inventory EU-JI
Figure 6.2: Interacting diagram indicating how decisiordues affect each other.

The main idea behind this transformation is quite intuitivestead of having the PS
and the SP players choose the actual production level andctibal sales in a period,
we let them choose the fraction of maximum allowable prodacand the maximum
possible sales. Mathematically, instead of lettirig:, n, i) be the decision variable for
the PS player, we let(m,n, i) be the decision variable, whet€m, n, i) is the fraction
of realized capacity that is utilized for production. Sianly, we let3(m,n,i) be the
decision variable for the SP player, wheten, n, i) is the fraction of the minimum of
the inventory at hand after production and the realized deindt is clear from the
definition that these two decision variables lie in the im&f0, 1] and no matter what the
actual capacity, or inventory or the period is. This helpsraasform the optimization
problem at hand with complicated side constraints into dlera with box-constraints.
Such a problem can be handled by sampled fictitious play diseretizing the interval
[0, 1].

One main benefit of the proportional transformation is thdécomposes the decision
spaces of various players. In particular, players can ahtlosir own policies without
regard to choices made by other players. This can be ilkgstes follows. For simplicity,
assume that the optimization problem is deterministic,the machines are reliable and
the demand is deterministically set by the price. The jopttroization problem at hand
before applying the proportional transformation can therrdpresented schematically
as an interacting diagram shown in Figure 6.2. As illusttatethe figure, a solid line
with arrow indicates a particular impact one module has atter module and a dotted
line represents that decisions made at two connecting ideamsodules are mutually
constrained.

Obviously, the constrained pairs in Figure 6.2 are the matpstacles in decomposi-

58

tion, and the purpose of proportional transformation isreak these bonds. Once these
bonds are broken, we can then define player from these modsilesual. It is impor-
tant to note however that even though this representatemives feasibility issues, the
reward of a specific policy employed by a particular playél depends on policies of
other players. However, this is relevant only while compagtihe best replies and not
while sampling policies from the empirical distributions.

The proportional transformation is formally defined at eatdte (m,n,:) for the
combined decisiofm, {a(m,n,i)},{B(m,n, i)}, {p(m,n,i)}) as:

z(m,n,i) = a(m,n,i) -m (6.8)
§(m,n,1) = [(m,n,i)- - min {Z + Z(m,n, i), gﬁ}é {D,(p(m,n, Z))}} :

Note however that since player Cl makes decisiomqgrduring each iteration, when a
decision is sampled from player CI's history, it is a speafpacity. This suggests that
if we only care about player PS, RM, and SP’s best replienagtiis specific capacity,
state variablen is really not necessary and can be removed from the state.sfde
benefit of doing so is that the computational efforts of cotimgubest replies are reduced
by a factor ofM (except for player CI). However, th is removed from the state space,
player PS, RM, and SP’s best reply are not dependemt @md in the subsequent iter-
ations, it's very likely that the sampled decisions are cota@ under different capacity
than the current sampled capacity from player Cl. This c¢tuies a tradeoff between
execution speed and the quality of best replies. While peniftg the numerical exper-
iments, we tried both approaches. However, in this chapterconsider only the case
wherem is removed from the state space. The proportional transfoom, afterm is
removed from the state space, can be written as:

Z(n,i) = a(n,i)-m (6.9)
S(0,i) = 300,1) i {4 30,0y £ o 1) |
€
The best reply problems for each module is presented in fl@nviog sections. In

each best reply description, we will describe the versioti wapacity as state variable
and the version without.

6.3.2 Best Reply Problem for the Capital Investment Module

From Figure 6.1, we can see that Cl only makes the decisidredieginning of the
horizon. In the case where capacity is not part of the statabla, for eachn, € M
we can compute (my, 1,0) with other players’ policies fixed & «(n,)}, {8(n,i)},
{p(n,i)}). Inthis case, CI's problem is just a one-dimensional maximfinding problem
that reduces to pure enumeration overajls.

m* = arg meg\(ﬂ{f(mk, 1,0) = N -C(my)} (6.10)

59

6.3.3 Best Reply Problem for the Production Scheduling Modie

Assume that other players’ decisions are fixedrat3(n,i),p(n,i)) at each state
(n,i). With this given decision and some we can compute the transformed point
(Z(n,1), $(n,1), p(n,i)) at each state by using equation 6.9. The state transitiothend
reward function remain the same. The best reply at each(statgis then:

a(n,i) = arg rg[%ﬁiEpn,dnc){R?XZ?@(pn,dn(-))+7f(m,n+1,in+1)},(6-11)

wherea(n, i) = ((n, 1), 3(n, i), p(n,).
Note that we need a finite variable domain, theretore [0, 1] is actually replaced in
implementation witi 0, §, 24, ..., 1}.

6.3.4 Best Reply Problem for the Revenue Management Module

Assume that other players’ decisions are fixedrata(n, i), 3(n,7)) at each state
(n,i). With this given decision and some we can compute the transformed point
(z(n,1), 8(n, 1), p) at each state by using equation 6.9. The state transitiotharrdward
function remain the same. The best reply at each étatg is then:

p(n,i) = arg r;léig(Eprdn() {R((lr(rz;?z) (Pns dn(+)) +7f (M, + 1, in—i—l)} , (6.12)

wherea(n,i) = (Z(n,i), 5(n,i),p).

6.3.5 Best Reply Problem for the Sales Planning Module

Assume that other players’ decisions are fixedrat«a(n, i), p(n,i)) at each state
(n,i). With this given decision and som@& we can compute the transformed point
(z(n,1), 3(n,7),p(n,7)) at each state by using equation 6.9. The state transitiothend
reward function remain the same. The best reply at each(statgis then:

Bn1) = arg max €y, 0,0 { B (00 da() + 2f (. + L) | . (6.13)

wherea(n, i) = ((n, 1), 3(n, i), p(n,)).
Note that we need a finite variable domain, therefore [0, 1] is actually replaced in
implementation with0, 6, 24, ..., 1}.

6.3.6 The Complexity Bound for Solving the Decomposed MDP

We will first find out number of flops required to complete amateon of SFP. From
player CI's best reply expression, number of flops requisetthé same as = 0 in the
global case, i.e3M — 1. For other players, combined flops required at each state is:

(Cps+ Crm + Csp)|L||D‘(CT + Cr+ 2) + (CPS_ 1) + (CRM — 1) + (Csp— 1),

60

whereCps, Crv andCsp represent the number of decisions to be evaluated at edeh sta
for player Cl, RM, and SP respectively. Teth|D|(Cr+Cr+2) is the effort required in
evaluating the expected value of a decision, and téffas— 1), (Crm— 1), and(Csp—1)
are number of comparisons required for player PS, RM and SP.

From the formulations of the best reply problems, we can bae(ips = Csp =
(1/60 + 1), andCrm = |P|. Forn > 1, the upper bound on the number of states is:

> (mu(n—1)+ 1) =myN(N —1)/2+ N.

n=1

Therefore, total number of flops required for an iteratio®BP is bounded by:

(BM—1)+ (mij + N)((Crs+ Cra + Csp)(22|L D] + 1) — 3)
< (BM-1)+ (mMNU\;_ 1> + N)(|P| + % + 2)(22|L||D| + 1) (6.14)

The dominating term in above expression 1$|P| + 2/§)|L||D|ma; N?. To roughly
have an idea about the saving we enjoy with decompositiongamecompute the ratio
between the dominating term in the global case and the damgi@rm here.

11Dpmax/P||L ||D|Mm3, N2
LIN,(|P[+ 2/8)[L[D[ma N2
= — 6.15
N.(P[+2/0) 619
where N, is the number of SFP iterations used. After problem datassriteed in sec-
tion 6.4, we will compute this ratio and use it as an estimatedssible savings we get
from decomposition.

6.4 Vehicle Manufacturing: A Numerical Case Study

In this section, we report detailed results of humericalegxpents done using real
world data from a major company in the automotive sector.

6.4.1 Problem Data

Recall from section 6.2.2 that the pieces of data requiredha plant building costs,
stochastic price-demand functions, production costgntary costs, and plant reliabil-
ity data. The general trend in the cost data as plotted inreigu3 was established by
discussions with employees of a leading automobile matwrfiag corporation. The ac-
tual numbers shown in this figure have been purposefullyoded for confidentiality
concerns.

e The planning horizon was assumed to/¥e= 10 periods.

61

e Plant building cost was assumed to be a function of the plapacty. The cost
was amortized over a finite horizon of length= 10, i.e., the horizon used for the
optimization problem.

e The price-demand functions were assumed to be exponendal,of the form
D(p) = e*p’. In order to introduce stochasticity, we parameterizedatehfunc-
tions D;(-) in the setD by parameters; andb,. In particular, we included three
possible demand functions that indicate low demand, nodexaland, and high de-
mand. This was achieved by settifig) = 3, and(a;, b;) € {(48.5573, —4.5076),
(49.0478, —4.5076), (49.5383, —4.5076) }. In each period, the actual realized de-
mand is chosen from one of these three functions with equéigtnility.

e The variable production cost per vehicle was assumed tedserwith increasing
plant capacity due to economies of scale. It was also asstwneel linear in the
number of units produced and stationary across time periods

e The inventory holding cost per vehicle at the end of a periad assumed to be 20
percent of the unit production cost in that period.

e The plant reliability value is assumed to be an element of thelset {0.6, 0.66,
0.7,0.74,0.8}. One of these values is selected with equal probability oheze-
riod.

e The time value of money was ignored, i.e. the discount fagtwas set tal.

e o andj were assumed to take values in the{getl /300,2/300,...,1}, i.e.,e =
d = 1/300. To ensure fair comparison between SFP and other alteesafivg., a
standard MDP solver), we assume that all solution procadwik search within
the space oM x A" x BY x P.

e 20 iterations of SFP were run on a Pentium 4 (2.8 GHz), 1 GB RAAmmMe with
RedHat Linux operating system.

6.4.2 Experimental Results and Analysis

In our numerical experiments, we looked at the expectedegadighieved by the poli-
cies obtained by both the SFP solver and a standard MDP soNso, we looked at
computational time required to obtain above policies irhtsativers. Although not men-
tioned earlier, SFP is numerically used as a search algoyriind a best value and its
associated policy will be kept and updated throughout &lgorexecution. In our im-
plementation, the best value and associated solution atategh at the end of each best
reply evaluation in each iteration.

The comparison results are shown in Table 6.1. Note thah&MDP solver, enumer-
ating all possible capacities cannot be finished in a redde@aount of time. Therefore,
we handpick a capacity which is made to be the optimal caphagimanipulating prob-
lem data and try to solve the single-capacity problem. Stheecomputational effort

62

Automatic

Demand (1000 units)

r Manual

0
20 30 40 50 60 70 80 90 100 110 120 15 16 17 18 19 2 21 22 23 24 25
Production Line Capacity (1,000 units) Price (8) 10t

(@) (b)

Variable Cost ($)

. . .
0 60 70 80 %0 00 110 120
Production Line Capacity (1,000 units)

©

L L L
20 30 40 5

Figure 6.3: Important problem data: (a) Production lindding cost, paid by period, as
a function of capacity. (b) Demand as a function of price Ma@jable cost as a function
of capacity.

is identical for each capacity, we can estimate the tota¢ tiequired to enumerate all
possible capacities. The time required to compute the @ptradue for a single capacity
is 5,866.3 minutes (or 4.07 days), since we have 33 capscihe estimated execution
time is 193,587.9 minutes (or 134.44 days). SFP solver requi3.1 minutes or was
approximately 14,778 times faster than the (estimated)ajlsolver execution time, and
the quality of the solution was withis% of the optimum. The evolution of best values

Objective value ratio
(versus global optimum)
MDP solver 134.44 days 1.0

SFP solver 13.1 min. 0.9715

*This execution time is estimated.

Algorithm Execution time

Table 6.1: Performances of the MDP solver and the SFP solver

against iterations for the SFP solver is plotted in Figude Bs plotted in Figure 6.4, we
can see that the SFP solver makes most improvements duriggteeations. In fact, it
stops improving aftet 5" iteration. This empirical finding is why we use 20 iterati@ss

63

the stopping criterion for the SFP solver.

1

0.951

0.9

0.85

0.8

0.75

0.7

0.651

Relative performance (against global optimum)

0.6

0.55

1 1 1 1 1
2 4 6 8 10 12 14 16 18 20
Iterations

05 ! ! ! !
0

Figure 6.4: Best values plotted against iterations, forSRE solver.

Notice that since we initiate the SFP solver with some abytinitial solution, we
can repeatedly restart the SFP solver several times (wigreint initial solutions) and
just keep the best solution in these runs. As an example, fflestart the algorithm 10
times, and randomly generate the initial solution each tiitme best objective value can
be brought to withinl % of the global optimum. Even in this case, the SFP solverlis sti
about 1,477 times faster than the global solver.

6.4.3 Obtaining Managerial Insights via Optimizations

As mentioned in the introduction, the ultimate goal of thesaarch effort is to take
advantage of the speed of the SFP optimization algorithneveldp the understandings
on the impacts of key decisions by quickly considering npldtproblem scenarios.

As an example, imagine the scenario where we are the produate manager, and
we would like to find out the relationship between the religbof the production line
and the associated inventory stocking level. We may acasimiiis by solving the inte-
grated problem via the SFP solver for a variety of differettbility levels. Specifically,
suppose we consider several different average relialéhtyls. To reliability level, we
associate the set of service levéls= {0.20,0.26,0.30,0.34,0.40} + 0.05i. For each
reliability level, we approximate an optimal policy by rung the SFP solver. With these
policies, we can run multiple instances of Monte Carlo satiohs onp,, andd,,(-), and
observe the resulting inventory level in each case. To bempecific, we will run 1,000
instances of Monte Carlo simulations for each reliabilgydl, and compute the average
inventory level. Plotting the resulting relationship beem mean service level and inven-
tory, we can fit a linear regression equation and use it toigrélte average inventory

64

level for a given reliability. Figure 6.5 illustrates thestdt of such an analysis, where to
speed up execution we g8t the collection of demand functions, to be a singleton that
includes only the normal demand function. In this case, treputed regression equa-
tionis: I = —20.10r +20.7924, wherer is the mean reliability level, andis the average
inventory level. Note that the policy used above is selefitad a pool of candidate poli-

20

18

16

B P I
o N >

Average inventory level (1000 units)
oo

Data points (obtained from SFP solver)

OF | — — — Regression b
1 1 1 1 1 1 1 1 1

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Mean reliability level

Figure 6.5: Average inventory levels versus mean relighiivels.

cies, all generated by the SFP solver with different indeions. The selection criterion
is the objective function value. In other words, we just pioi policy that returns highest
expected profit. However, when comparing the average ioveihvels of these policies
with that of the global optimal policy, we observe that theselness of objective function
values does not imply the closeness of resulting averagmiawy levels. Furthermore,
the policies found by the SFP solver, even with almost idah@xpected profits, can have
very different inventory stocking patterns. This suggésas the inventory stocking level
may not be a crucial factor when the expected profit is optchiAs expected, one can
see that the inventory level grows almost linearly as thaléity of the production line
drops. Also, as reliability level goes over certain levehecomes optimal to implement
a zero-inventory policy.

6.5 Conclusion

In today’s competitive environment in manufacturing opierss, it is important to
make coordinated, near optimal decisions at manageniategic and operational levels
such as capital investment, revenue management and pi@dptanning. The mathe-
matical model of this decision problem is extremely cormgikal and potentially involves
a multitude of exogenous as well as endogenous factors.idrchiapter, we presented

65

a simplified model that captures many of these factors - @apivestment, revenue
management, production planning, random machine failuaed stochastic demand -
yet remains computationally tractable, though still afvadfing to traditional optimiza-
tion methods such as dynamic programming. To overcome ¢imgpatational difficulty,
we used the game-theoretic optimization paradigm of Sasnpietitious Play. SFP has
emerged as an effective discrete optimization heuristiaf@onstrained problems in the
recent past, as demonstrated in Chapter 5. However, to a@pjayour manufacturing
optimization model, we extended it to handle constraintsis Tvas done by applying a
variable transformation to the original dynamic programgnformulation to convert it
into a finite game in strategic form, making it amenable to.S%ough illustrated on
a specific formulation in this chapter for simplicity and cogteness, we believe that our
approach can be generalized to a class of sequential depisiblems. In that sense, this
approach may be viewed as a heuristic for approximate dynprogramming.

We considered a case study from the automotive manufagtgector to perform
numerical experiments. SFP was able to find near optimatieakiabout four orders of
magnitude faster than conventional dynamic programminthaus when applied to the
vehicle manufacturing problem. Since SFP can be paralleasily, this performance
can be further improved. The most important utility of thigpeoach lies in its ability
to quickly solve multiple scenarios. The potential of usihig tool as a way to develop
managerial guidelines is demonstrated in the final sectighi® chapter. We hope that
in the future, this technique can be used to develop dat@mirules of thumb to guide
managerial decisions in complex manufacturing operations

66

CHAPTER 7

Sampled Fictitious Play: Conclusions and Future Work

The first part of this thesis is devoted to issues related tdrakzed optimization
problems. Chapter 3 focuses on model building process. t€h&docuses on the use
of SFP algorithm in general unconstrained black-box oation problems. Finally,
Chapter 6 focuses on the extension of SFP algorithm so thiaticelass of constrained
optimization problems can also be solved with it.

7.1 Summary of Contributions

In Chapter 3, before even going into any particular algamitive first discussed im-
portant modeling considerations. As model builders, weallglook for completeness
and realism. However, as model users, we also want the mmdeléconomic: it should
only contain information that is really valuable and abseljunecessary. Before adding
any feature to the model, no matter how important it may saotdtively, we should
systematically validate its value. The stochasticity & thodel is a good example. Due
to the stochastic nature of many real-world problems, ibimmonly viewed as a must,
and models without it are often viewed as questionable. Kewen the specific sce-
nario we studied, we surprisingly found that the value ofautain information turns out
to be zero, implying the redundancy of a stochastic modeis Gase study provides an
example on how valuable simple analysis can be in buildindets

Chapter 5 presents a general parallel implementation @ Efealgorithm for solving
unconstrained discrete optimization problems. Using mm@mnerations in finding best
replies is computationally feasible since we can take atdggnof the parallel implemen-
tation of the algorithm. This capability is shown to be ertedy useful in solving the
real-world problem of coordinated traffic signal control.

Chapter 6 presents our attempt in extending the SFP algotibhconstrained op-
timization problems. In particular, we use a joint optintiaa problem in production
systems, modeled as a Markov decision process, for casg siln@ challenge of this
extension lies in the handling of constraints that goveay@is’ interactions, and we
proposed a novel feasible space transformation technadeadl with this issue. With

67

this enhancement, we can solve the problem equipped wilthwa#d data four orders of
magnitude faster than the global solver, with satisfacémguracy (within 3% of the true
optimum).

7.2 Future Work

The proposed future work can be classified into two majorgmates: methodology-
related and application-related.

On the methodology development front, extending the SFérigihgn to a more gen-
eral class of constrained optimization problems remaiasibst important issue. Other
researchers in our research group are also addressingshis [Ghatet al., 2006] by
developing more variants of SFP. However, for a complexweald problem, given all
the available algorithm variations, it remains unclear asvshould pick the best one.
One interesting idea in addressing this may be to look foofiy@rtunity in borrowing
techniques used in other state-of-the-art metaheuridtikessGenetic Algorithms (GA).
GA, like the original SFP, is by construction only suitalibe finconstrained optimization
problems. However, researchers in the GA community haveng lostory of devel-
oping various techniques in dealing with feasibility issuaised when GA is used in
constrained optimization problems. With these technigGé&scan be used in many real-
world A/P-hard problems (e.g., traveling salesman problem). Ofsmuhese techniques
are usually highly problem-specific and hard to generallzewever, by reviewing the
GA literature on these techniques, we may be able to find riaspn in dealing with
specific classes of problems.

One example along this line of thought is the treatment otidinhensional knapsack
problems (MKP). Large-scale MKP is an important real-wgrtdblem widely studied
in the metaheuristics community, GA in particular. In ouceet research, we have bor-
rowed the “repair operator” idea in GA, applied it to large Mitest cases, and obtained
comparable success.

On the application-related research front, we look to ecadiour work on traffic-
related and production system-related problems.

For our work on CoSIGN, a natural extension is to test CoSI@Mther even larger
and more detailed traffic networks. The use of more advama#ettsimulations may also
be desirable in modeling more complicated traffic charésttes. All these factors, when
combined together, will make an already challenging probé¥en more so. Of course
we can address this issue by throwing in more parallel comguesources, however,
this may not be the only way to go. DellOlmo and Mirchandat®96] suggest the
use of simplified simulations when the network-wide perfante needs to be evaluated
frequently. In BESTREPLY, the relative superiority of each player’s strategy sébest
is what we really care about, and a simplified simulation tiaat accurately provide this
relative performance comparison will be good enough, evenabsolute terms it is just
an approximation. Of course, in order to take this route, axeetio go much deeper into
the structure of the problem, and carefully design an appratton scheme. Garciat
al. [2000]'s work on dynamic vehicle routing affirmed that usaqgproximate best reply

68

in SFP is indeed a promising direction. Garetaal.[2000] proposed to solve a dynamic
vehicle routing problem by using SFP algorithm. Howeveg, lest reply function was
constructed by more than just pure enumeration over rotgenaktives (which explode
exponentially in number of nodes). Instead, they propos@gproximate marginal time-
dependent link travel times and compute time-dependentesdigaths as best replies.
We avoid going into technical details here but the relevagttlights from their work is
that by exploiting the problem structure carefully, the o$gure enumeration can be
avoided, and they end up requiring only one simulation @eatton.

Another possible future work on the traffic-related appglorais the combination of
both dynamic vehicle routing and coordinated traffic sigmedtrol. Much recent research
in the field tries to address this issue, however, these ptiemave resulted in only limited
success, mostly due to the complexity of the problem. Withiégues introduced in this

thesis, and by applying proper approximation scheme toésereply computations, we
hope to tackle this combined problem.

For our work on production system-related problems, wergereésted in the benefit
the solver developed in Chapter 3 may have in an industrithge When considering
all direct and indirect benefits it may bring to the productgystem, it is estimated that
the methodology may bring savings in the scale of hundredslbbns of dollars. It will
be a major achievement if such system can be built and degloye

69

PART Il

Market-Based Approach For
Decentralized Resource Allocation
Problem

CHAPTER 8

Market-Based Approach: An Introduction

8.1 Motivation

We have already seen in Part | how to optimize complex systemssing SFP al-
gorithms. The use of SFP helps us handle some undesiralgerfigs in optimization
problems, e.g., discreteness, ill-structured objectivefion, and size. However, in some
cases, a central optimization may not even be possible deiéher or both of following
two reasons:

Decentralized control. Authority may be by construction decentralized, such that i
dividual decision makers, @gents have control over respective elements of the
overall problem. For example, agents may have discreti@n which tasks they
perform, or rights over portions of the resources.

Distributed information. Information bearing on possible or preferred allocatioraym
be distributed among the agents. For example, each agenhavayits own pref-
erences over task accomplishments, and knowledge of itcapabilities and re-
sources. Such information is generally incomplete, asytmmend privately held,
so that no central source could presume to obtain it throungple communication
protocols.

70

In these cases, traditional optimization approaches thaaicentralized control cannot
be used and we need to focus on designing mechanisms thanadlurage independent,
self-interested decision makers to act in a way such thabtheome generated by their
collective actions is as close to a global optimum as possidbte that although we are
interested in guiding individuals to a global optimum, iteda’t mean that we will try
to make individual decision makers collaborate with eadtentlt is essential for each
decision maker to act solely in its own interest.

8.2 Background

8.2.1 Market-Based Resource Allocation

Arguably [Wellman and Wurman, 1998], markets comprise #st{understood class
of mechanisms for decentralized resource allocationmémket-oriented programming
[Wellman, 1993], omarket-based contrdlClearwater, 1995], agents representing end
users (those requiring task accomplishments), resourceryand service providers
issue bids representing exchanges or deals they are widiegecute, and the market
mediators determine allocations of resources and task$uasction of these bids. In a
well-functioning market, the price system effectively eggpates information about values
and capabilities, and directs resources toward their nadsed uses as indicated by these
prices. As Ygge and Akkermans [1999] put it:

local data + market communication = global control

Note that in previous studies on market-based approacloaspeatitive behaviors
(meaning that agents take prices as given and neglect ttiiemces on prices) are usu-
ally assumed, and as noted by Cheng and Wellman [1998], wektairc well-defined
conditions are met, classical general equilibrium modals lse used to solve general
convex-programming problems.

However, in the cases where agents are aware of the influétfoeiicown actions on
prices, they may exhibit strategic behaviors, and clakga@eral equilibrium analysis no
longer applies. The existent of these strategic behaviargeg to be a major difficulty
in designing market mechanisms for decentralized res@ll@eation problems, because
for unbounded agent strategy spaces, itis virtually imipbesto evaluate the performance
of given market mechanism, let alone choose an optimal one.

Even if we can approximate agents’ strategy spaces finpegdicting agents’ be-
haviors (and identifying associated payoffs for all ageo# still be very hard. This is
mostly due to the fact that agents are self-interested ahdeak to optimize only their
payoff functions. Each agent’s optimal decision is a fumtidf other agents’ decisions,
which are also functions of this agent’s decision, ad infimt For these scenarios, a
solution that is stable in the sense that each agent canpobvu its payoff by deviating
unilaterally, will be ideal. As discussed in Chapter 2, sacéolution concept is called
Nash equilibrium. For each market mechanism, if we can dsfinge collective measure
that quantifies overall allocation efficiencies for the NEan then be used in evaluating

71

various market mechanisms.

Finding NEs is a challenging task, especially if each agentitial preference is char-
acterized by some probability distribution (i.e., the mf@tion is incomplete from an
individual agent’s perspective). To address various ssekated to the identification of
NEs in practice, we have to perform game-theoretic anagmsigirically. Game-theoretic
analysis is summarized in the following subsection.

8.2.2 Game-Theoretic Analysis

In order to prepare for the game-theoretic analysis, weneid to specify the payoff
matrix that contains payoffs for all agents in each posgibte strategy combination. In
our analysis, these payoffs in the payoff matrix are evaldifty runningmarket games
where both market mechanism and agent strategies are iraptechcomputationally. In
a typical market game, strategies are implemented as geffjwagrams (software agents,
or just agents) and are initially endowed with random resesiand random preferences
according to some known distributions. At designated wais; agents receive informa-
tion (e.g., prices) from market mechanisms. Based on tfasrimation, agents will then
perform allowable actions (e.g., bidding). The payoffsdbparticipating agents will be
determined by combined actions over the horizon. From wescan view each strategy
as a mapping from the product of initial information (endosnts and preferences) and
market information to the actions. Since market infornraiedetermined by the inter-
action of strategies, the actions chosen are ultimatelyetion of initial information and
other agents’ actions. In order to capture every detail ehggj interactions, an extensive
form game tree must be used. However, to simplify the anglyge will collapse the
extensive form game into a strategic form game by definingfiss functions of strat-
egy choices only. To achieve this, we use the probabilityridigtion governing initial
information to compute thexpected payoffor each strategy combination. To evalu-
ate expected payoff computationally, we can draw enouglpknirom the probability
distribution of initial information and execute market silations for these samples.

8.2.3 Challenges

In this chapter, we motivate the use of markets when dedezattian is embedded in
the resource allocation problem. Although under some defined conditions (e.g., see
Cheng and Wellman [1998]), market mechanisms are shownittebedevices in guiding
resource allocations in a decentralized manner, propeegsoring the performance of
each market mechanism remains a major challenge. The udtiod of Nash equilibrium
as a solution concept in market-based resource allocat®masios aims at addressing
this issue. However, setting up market-based resourcegdiltim scenarios for the purpose
of identifying Nash equilibria is shown to be a non-triviabk. Various simplifications
and techniques are required in order to make game-theamedilysis possible. More
specifically, we must complete following tasks (as noted lacKie-Mason and Wellman
[2006]): (1) choose market mechanism, (2) generate catelgti@ategies, (3) estimate the
resulting “empirical game”, (4) solve the empirical gameg €5) analyze the result. This

72

procedure can be iterative, meaning that the result we gaem(5) can be feedback to
step (1) in order to guide the selection of better market raeidm (in terms of allocation
efficiency).

This part of thesis will focus on steps (3) to (5). In the fallog chapters, we will
propose some techniques one can use in these steps. Anddaritleding chapter, we
will use a dynamic task allocation scenario as an examplemahstrating how these
steps work in practice.

73

CHAPTER 9

Market-Based Approach: An Empirical Methodology

9.1 Iterative Mechanism Selection: An Overview

It bears repeating that the motivation of introducing markechanisms to the de-
centralized resource allocation problems is our inabditin controlling these systems
centrally. Thus the role of a planner evolves from being antodler”, who seeks op-
timal control policy, to being a “facilitator”, who seeks atof market mechanisms so
that selfish decision makers will be guided to collectivethiave the highest possible
allocation efficiency. This chapter will go into details osexies of standard procedures
in designing these market mechanisms. In Section 9.2, wedate a software platform
that can be used in simulating market games. In Section ®3)ighlight some impor-
tant guidelines in designing agent strategies. In Sectidnv@e discuss issues related to
the search for the NE in an estimated empirical game. Fimalfection 9.5, we con-
clude the chapter and we review some important directiotisarstudy of market-based
approaches.

9.2 Simulating Market Games

For all decentralized resource allocation problems weysthédre are two major com-
ponents: 1) agents that represent individual decision rsaked 2) market mechanisms
that allow exchange of resources. Due to the decentraliaada of the problem, most
agent-specific information, including preferences oveksacapabilities in performing
tasks and resource holdings, are endowed to each agentoworerobability distribu-
tions are usually used in describing much of these informndt account for uncertainties
involved in the problem. This probabilistic representatad the problem makes it very
difficult to analytically evaluate the performances of canalbions of strategies. To es-
timate the performances of combinations of strategies,amedefine a market game as
a collection of agents and market mechanisms, and executéeM@arlo simulations, in
which each agent’s related information is generated acogto the governing distribu-
tion. To support massive simulation efforts, we have deyatioa software platform that

74

can be used to provide comprehensive services, includinggéneral scripting auction
engine, AB3D [Lochner and Wellman, 2004], that can be useatkfiming a wide range

of market mechanisms, 2) a general market game engine thdtecased in generating
market games probabilistically, 3) a set of communicatimstqrols that can be used in
designing software agents capable of communicating withpmments 1) and 2), and 4)
a scorer that evaluates performances of all agents aftema gads. In the following

paragraphs, we provide more details on these components.

1. Scripting auction engine The idea of designing a flexible software platform for
running market game simulations is not new. In fact, AB3Dd(atso its support-
ing functions) can be viewed as a redesigned and extendsidneaf the Michigan
Internet AuctionBot [Wurmaret al., 1998]. Like the AuctionBot but more flexi-
ble, AB3D supports a wide range of market mechanisms, spdadiiia high-level
rule-based auction scripting language. The AB3D scriplamguage exposes pa-
rameters characterizing the space of bidding, informatealation, and allocation
policies [Wurmaret al,, 2001]. With proper programming constructs, flow control
can also be easily achieved.

2. Market game engine To generate a market game probabilistically, we need to
provide both common information and agent-specific infdromg as described as
follows:

e Common information: this refers to important informatiogeats should
know even before the game is actually executed. Most commimnnna-
tion is related to the structure of the game, including (lattlimited to): i)
length of the game, ii) number of agents in the game, and thspective
roles, if any (e.g., buyer, seller), and iii) number and tgpauctions used in
the game.

e Agent-specific information: in a typical decentralizedoese allocation prob-
lem, each agent is endowed with information that is only ssitde to itself.
This information may include task properties (e.g., theigdbr fulfilling the
task, the deadline of the task, and the resource requireofi¢ghe task), and
initial resource endowment.

It's not uncommon for the above information to be structunextarchically (e.g.,
information can be represented as a tree). To effectivg@sesent and handle such
structures, we use XML in describing this information. Tgpgart probabilistic
game generation, we developed a set of programming cotstaatled game de-
scription language (GDL), to support basic variable detians, looping, and ran-
dom variable generations. A detailed description on GDlvalable in Appendix
B.

GDL is general enough to describe a wide class of market gamgading TAC
classic, a travel shopping game [Wellmetral., 2001], information collection sce-
narios [Chenget al, 2004b], job scheduling in reconfigurable production lines
[Schvartzman and Wellman, 2006], and dynamic task alloonginh Chapter 11).

75

3. Agentinterface. The game system implements a communication interfaceghro
which bids, queries, and any other game interactions amsrirdted.

4. Scorer. For each market game, we must define a procedure to evahggpetfor-
mance of each agent on the completion of the game. Scorincatiypentails the
assembly of transactions to determine final holdings, an@dch agent, an allo-
cation of resources to activities maximizing its own ohjexfunction. For each
agent and the strategy it represents, this score indicat@sarell it performs in
this particular strategy combination for some realizatibthe agent preferences.
It should be noted that scoring mechanism can be highly gdependent, thus it's
up to the developer of the market game to provide the correfipg scorer.

By assembling the above components we have a general emeérdrfor executing
market games. The interactions of the above componentassrdted in Figure 9.1. For
detailed descriptions and a working AB3D market gamingfpiat, please refer to
http://ai.eecs.um ch. edu/ AB3D .

: [: Scripting Auction
Engine

il

Market Game
(= Engine —={ Scorer

i Agents ([—>

Agent Interface

XML Data
Source

Figure 9.1: General market gaming platform, depicted attional level.

With this general market gaming platform, we can executgelarumber of simu-
lations in order to accurately estimate the payoff for eaghna strategy in a strategy
combination. Note that since it is possible that multiplpies of the same strategy may
appear in a strategy combination, when estimating the pagsbciated with some strat-
egy, we compute the average payoff for all agents using trasegyy, and let the average
payoff be the estimated payoff of this strategy.

Also note that when performing game-theoretic analysigmaewith some “strategy
ingredient” (a specification on how many of each strategysed)i may be presented in
many possible permutations, and these permutations wiiidveed as different instances
in standard game-theoretic analysis. However, in thisshes will assume that market
games we studied are symmetric, meaning that the permutatiagents’ order will

76

not be a factor in determining agents’ payoffs (e.g., for emgawith 4 agents and 2
strategies, A and B, ABAB, AABB, and all permutations having As and two Bs will
be treated as the same game). This simple assumption caty geshuce the number
of strategy combinations we have to consider. Nash’s famesislt stated that Nash
equilibrium exists for every normal form game [Nash, 193&@jr symmetric games, this
result holds true as well. However, stronger results carhbe/s for symmetric games.
As a special extension, Nash also showed that symmetric Basitibrium exists for
finite symmetric games. The existence results in some offemia classes of symmetric
games are discussed in detail by Chengl.[2004a].

9.3 Designing Agent Strategies

The definition of agent strategy varies greatly in differemitexts. In the context of
our market games, an agent strategy is defined as a time-dEmeinction that takes
market information and agent’s private information (thigyninclude agent’s current re-
source holdings and agent’s preferences) as inputs, apditswactions that should be
taken in the market.

To illustrate the idea, we will use a simple resource alliocgproblem as an example.
Let R be the set of resources shared by all agents. For each agehtbé the set of
assigned tasks. Lt be the current price for resourge ; be this agent’s holding of
resourcej, V; be this agent’s valuation on tagskand/; ; be the amount of resourge
required for task. Let P, H, V be the vectors of;s, H;s andV;s respectively, ani
be the matrix of\/; ;s. By definition,P is the information obtained from the market, and
H, V, andM are agent’s private information. It should be noted thateamormation,
e.g.,P andH, may be time-dependent, therefore we add supersctgpindicate price
and holding in time period.

In general, an agent’s bids may depend on the whole histanagdket prices and bids,
however, to simplify the construction of the bidding stgpteve assume that each agent’s
bidding only depends on the current state. Each agent’smmiustate is composed of both
market and private information, and agent’s bids can be cedbby feeding the above
information to a bidding functionF(P*, H*, V,M). If prices, task values, and resource
requirements are all real numbers, the bidding function msapping fromRR°IT* to
RIRI,

In the following paragraphs, we describe two possible wéygesigning and building
agent strategies.

Bidding on best packageThis bidding scheme first solves for the optimal package of
resources, give®’ andH’. The optimal package includes the amount of addi-
tional resources that are required, and how resourcesdbeudllocated to tasks.
With this optimal package, agent will then place large etobigls so that those
required resources can be bought. The problem of findingnagptpackages can be

77

represented mathematically as:

max Y Viwi— Y Py (9.1)
i€T jJER
s.t.
ZMz‘,j x; < H;»+yj,Vj eR
ieT
r;€{0,1},VieT
y; > 0,integerV j € R

wherez; indicates whether taskshould be completed, and indicates how many
units of additional resourcgshould be bought from the market (note that no sell-
ing is allowed in model (9.1), hence the constraint 0). As suggested by model
(9.1), the agent will simply place large bids to byyunits of resourceg. This bid-
ding strategy is common in practice, e.g., a version of thegagy is implemented

in Chenget al.[2005b] for a challenging travel shopping game. This stateay
also bear different names, e.g., Greenwald and Boyan [2&0lEd such problems
completion problemsThis similar strategy is also mentioned in Statal.[2001].

Bidding on marginal values This bidding scheme first computes the marginal value of
each additional unit of available resources; the agent g@ces bids that match
computed marginal values. When computing the marginabvadthe resource, we
solve model (9.1) repeatedly. In the following paragrapb,usev(P’, H', V. M)
to represent the optimal value obtained in model (9.1). \ttithwe can define the
marginal value of the" additional unit of resourcg, m(j,n), as:

m(j,n) = v(P H +ne,V,M) —v(P , H + (n—1) &,V,M)

~r
whereP' is identical toP’ exceptP; = oo, ande; is 4™ unit vector. In words,
the above formula says that the marginal value ofitfieunit of resourcej is the
difference between the value of holding exactlhunits of additional resourcg
and the value of holding exactly: — 1) units of additional resourcg The idea
of bidding on marginal value has been widely used, for exange#e Chengt al.
[2005b], Stoneet al.[2003] and Greenwald and Boyan [2004].

Note that so far we have assumed tRatan be directly obtained from the market.
However, because of the dynamics of the market mechanisnrent prices usually are
not a very good indicator of final prices. This inaccuracyl edriously impact the bids
generated by above two schemes. This brings up the need fcamate prediction of
closing prices of auctions. Many possibilities have beerstigated in several applica-
tions [Stoneet al,, 2003; Wellmaret al,, 2004; Zhanget al, 2003; MacKie-Masowet al,,
2004; Osepayshvibt al., 2005], and researchers have proposed various ways tovepro
the quality of price predictions. In this thesis we will asguthat price predictions are
exogenous and will be provided by a black box.

78

9.4 Finding Nash Equilibrium in Empirical Games

Given a market scenario, after we have defined players, piisaegies, and market
mechanisms to use, we can obtain the payoff matrix charaictgrthis market scenario
by executing sufficient number of market game simulatiofe fiext step in the analysis
is to compute “solutions” for the market game, i.e., idgmtiff NEs given the payoff
matrix.

Significant progress has been made in recent years on theutatiop of NEs and
also associated computational complexity [Conitzer anudBalm, 2003; Fabrikargt
al., 2004; Papadimitriou and Roughgarden, 2005]. In gendralatgorithms for com-
puting NEs in a game can be classified into two major categiotiee ones that find a
sample NE, and the ones that find most (if not all) NEs. Whemnpussible, we would
prefer methods that can give us as many NEs as possible.

One major issue in NE computation is the exponential grovithesize of the game.
Even the simplest-player game, the one where each player makes a binary aecisi
requiresn2™ values to represent. As demonstrated in Part |, for manyipedcases, even
storing or loading the game is not possible (e.g., the coatjautal example discussed in
Chapter 5 has 54,000 players; even with identical payof$, ithplies we have to deal
with at least2®4% numbers!). In Part |, we proposed SFP as the algorithm fockea
for NEs in large games. SFP is started with no knowledge atfemupayoff matrix,
and a particular payoff value (for a strategy profile) is oalaluated if it is required
by some best reply subroutine. This search strategy avoaladed to have a complete
payoff matrix before we even begin searching for the NE ingae, thus avoiding this
issue. In other words, although the search space is enortifmsearch strategy we
use selects candidate strategies extremely carefulliy evitphasis placed on the most
valuable strategy profiles.

Besides this approach, exploiting compact representafigames is also a promising
approach in dealing with exponential growth of the game. i8sussed by Papadimitriou
and Roughgarden [2005], special structures in games, ib#&d properly, can assist us
in more efficiently searching for NEs. Some particular dunes, like symmetry, were
well-studied at very early stage of the development of teeytheory. As pointed out by
some researchers [Papadimitriou and Roughgarden, 208%eR al., 2005], by simply
recognizing the symmetry, a game witlplayers and: strategies can be represented with
n+k—1

k—1
exploit symmetry. Other notable game structures includelgical games [Kearret al.,
2001], congestion games [Rosenthal, 1973a,b], and Idfedtegames [Leyton-Brown
and Tennenholtz, 2003]. Each of these classes of gamestgssamparticular application
domain with certain strong properties. If the scenarioistidan be described by any of
these games, specialized algorithms that exploit resgestiuctures of these classes of
games can greatly improve the efficiency of the solutionceag process.

In the following chapters, the primary structure we are eijig is the symmetry
of the game. However, in many cases, this reduction alone moaype sufficient. In
those cases, we may want to approximate the solution of tine gay reducing either the

only k (numbers, great reduction compareditd® numbers if we don’t

79

number of players, or the number of strategies. Both idemaianed at reducing the size
of the game. The size of the game is incrementally reducedtoan be solved properly.
As we would expect, the NE found in these reduced games asdlyisim approximate
NE in the original games, i.e., aANE. Also, we must note that in the process of game
reduction, some NEs may also be eliminated. However, thiseiprice we have to pay
in many cases if we want to solve the game.

All these related issues related to game reduction are siecuin Chapter 10, with
particular emphasis on the strategy-reduction technique.

9.5 Conclusion and Related Works

In this chapter we introduced a recently developed set binigces (under the name
“empirical game-theoretic analysis”) that can be used fanypurposes; in particular, for
designing agent strategies, and for designing market nnésaing. These two applications
interestingly capture two extremes in the spectrum of thekatdbased approaches. On
the one end, it’s individual agents who take environmentiasng and try to reason the
optimal strategies against other agents (within that @aer environment). On the other
end, it's the market designer, who tries to select marketiaeiems that optimize certain
performance measure it cares. These two applicationslgladate to each other, since
modifications to market mechanisms will change agents’ \iels and the change in
agents’ behaviors must be taken into account by the marlsgmer when proposing
new mechanisms.

Market mechanisms used in the real world applications liseablve iteratively.
With some market mechanisms initially proposed for cerfairposes, agents (partici-
pants) then exploit any loophole they can find in order to mméze their own benefits,
designer then patches the flaws; this process may repeatdoy iterations until the
whole system settles down to a stable condition. If therenyschange to the environ-
ment (e.g., the introduction of new participants, the cleatagthe problem parameters),
above adjusting process will repeat again until anothdreteondition is reached. The
merit of the “empirical game-theoretic analysis” is thagtemad of reacting to wh&iave
happened, we perform necessary analyses a priori, andggqudicies targeted at what
would happen. Given a decentralized environment, “empirical gqéimeoretic analysis”
provides a way for us to perform computational experimemtzrder to validate our de-
sign. These analyses, if performed properly, can save us lfi@ving to make real-time
adjustments and could help us avoid making costly mistakes.

There are many recent works on the use of empirical gameédhe@pproach on
both ends of the spectrum. For the design of market mechanigrare are works by
Vorobeychiket al. [2006] and Chapter 11 of this thesis. For the analysis of &jen
strategic behavior and efficiency of the game, there are svdokie by Kiekintvelet al.
[2006] and Wellmaret al. [2006]. More details on the use of these techniques can be
seen in the example studied in Chapter 11.

80

CHAPTER 10

Strategy Reduction by Iterated)-Dominance

10.1 Introduction

As discussed in Section 4.1, finding a NE in a game of reakstie is difficult. Find-
ing all NEs will be even more difficult, and is only possiblefairly small games (e.g.,
even for 5-player, 5-strategy games, it may take hours, ante8mes days, to solve).
However, whenever possible, we would strongly prefer sigvor all Nash equilibria.

An immediate thought on how we can solve larger games, agsfied in Section 9.4,
is to approximate the game by reducing either the numberayieps or strategies consid-
ered. The idea of reducing the number of players is formdlzeWellmaret al.[2005a];
the application of this method to a specific market game isriged in Wellmaret al.
[2005b]. In this chapter we focus on approaches for reduttiaghumber of strategies.

The idea is directly inspired by the iterative removal ofctly dominated strategies
[Luce and Raiffa, 1957; Farquharson, 1969; Moulin, 1979]pAre) strategy is strictly
dominated if we can find a mixed strategy that performs $grlmttter than this strategy
under all possible combinations of other players’ straggiAs a result, these removed
strategies cannot be part of any NE. Since the removal of strakegies from an agent’s
strategy space may result in the removal of other stratégiexher players, strict domi-
nance is usually executed iteratively, until no furthermng is possible. One nice prop-
erty of the process of iterative strict dominance is thatldRyin the reduced game is also
a NE in the original game.

A weaker version of strict dominance is to allow the prunihgtoategies that perform
as well as the dominating mixed strategy. These weakly datadstrategies may be part
of some NEs in the original game, however, any NE in the redigeane is still a NE in
the original game. It should be noted that iterative weakidamce, unlike iterative strict
dominance, ipath dependenmeaning that the set of surviving strategies may depend
on the order of eliminations [Gilboet al., 1990].

An even weaker version of the strict dominance is to allowdbminated strategy
to be better than the dominating mixed strategy by a fixed ambuThis §-dominated
strategy may be part of a NE, and a NE of the reduced game mayenessary be a NE

81

in the original game, however, it can be viewed as an appratdmE of the original
game. Like iterated weak dominance, iteratedominance is path dependent, and fur-
thermore, with every iteration executed, more error wildoeumulated. In this chapter,
we relate the execution of thedominance to the error bounds on NEs obtained in the
reduced game. Also, we propose a simple heuristic for dét@rgthe order of strategy
elimination. We also explore the benefit this method cangotinthe empirical game
theoretic analysis.

This chapter is organized as follows. In Section 10.2, wenfdly define the proce-
dure of iterated-dominance, and we discuss the error bounds on NEs in redjaceds.
In Section 10.3, we go into details on how one would implemiemateds-dominance
in practice, and we provide a simple implementation suggesin Section 10.4, we use
a challenging empirical game from the trading agent cortipatcommunity to demon-
strate how our procedure can help in solving real games. llfima Section 10.5, we
conclude our work.

10.2 Iteratedd-Dominance and Equilibrium Approxima-
tion

Before we go into details of the procedure, we first defirslominancefor a pure
strategy. In the rest of this chapter, we follow the notatiefined in Chapter 2.

Definition 10.1 Let S; be the finite set of pure strategies for playeand A(S;) be the
space of mixed strategies for player We define strategy! € S; as é-dominated if
o} € A(S}),S =S\ {s!} such that:

§ +ui(or,s_4) > ui(sh,s4),Vs_; €S, (10.1)

In other words,s; is §-dominated if we can find a mixed strategy (on the set of pure
strategies excluding}) that, when compensated by is at least as good as against

all pure opponent strategies. Note that unlike the standardinance definition, for
each pure strategys)) we check, we must exclude it from the domainf-). This
modification is necessary because if we don't exclgjdé will be 6-dominated by itself.

Because we introdueewhen eliminating strategies, eliminated strategies maganh
be part of some NE. As a result, the NE computed in the reduaetegnay only be an
approximate NE in the original game. In this section, we dranthe effect of multiple
iterations ofd-dominance has on the quality of obtained NEs, relative &odhginal
game. We first state how error is accumulated with one itanaif /-dominance.

Proposition 10.2 LetI'™™ be the original game and lef' bed-dominated il™™. LetT" !
be the game obtained by removisig from I'*. If any unilateral deviation by a player
from a mixed strategy can only result in at mesinprovement in its payoff, it is called
an e-equilibrium. If o is ane-equilibrium inT™*1, then it is a(é + ¢)-equilibrium inT™.

82

Proof.
Sinces? is §-dominated i, 3 o7 € A(S}), whereS! = S'~ '\ {57}, such that:

0+ Ul(O, 85—) > ul(S, _Z'),VS_Z‘ €S, (102)
Also, sinceo is e-equilibrium in[™*! (which impliesoc € A(S})), we have:

e+ ui(oy,0-5) > wi(s,0-4),s; € St (10.3)

From (10.2), we can write:
5 + ui(aznu a—i) > ui(‘S?v U—i)u (104)

since (10.2) istrue for al_; € S_;, arbitrary linear combination of_; will also satisfy
the inequality.

Sinces? ando; both belong teA(S'), ando; is part of thee-NE in T, from (10.3),
we have

e+ ui(oy,0-;) > wi(or, 0_;), (10.5)
again, since (10.3) is true for any € S!, arbitrary linear combination os; will still
satisfy the inequality.
From (10.4) and (10.5), we have:

(04 €) +ui(os, 0-;) > ui(si,0-;), (10.6)

from (10.6) we can see thatis indeed g9 + ¢)-NE inT"™. =

We are now ready to define a theoretic upper bound on err@ssaveral iterations
of)-dominance.

Proposition 10.3 LetI™ be the game after iterations off-dominance from the original
gamel®. We assume that one strategy is eliminated witin each iterationi. LetI'® be
the original game. Then anNE obtained i isa(>_;" , ; + ¢)-NE inT°.

Proof.

From Proposition 10.2, we know that the statement is true fer1. Assume that the
statement is true fat = n,, then the=-NE inT"™ is (3_7 | 6; + €)-NE in .

Now we would like to show that the statement is also trueifer (n; + 1).

Note that sincé™ is reduced fronT? aftern, iterations off-dominance. The state-
ment forn = n; should hold for any pair of? andI'?, as long a3 is obtained from;
iterations ofo-dominance froni™.

Therefore from above claim, theNE in T+ is (321" 5,4 €)-NE inT"'. However,
from Proposition 10.2 we know thap 1" §; + ¢)-NE in " is (327" 8, + 6, + ¢)-NE
in T°. Thus the statement is also true foe= (n; + 1).

From math induction, the proposition is proveds

83

10.3 Implementation of lterated -Dominance

Every time we use & to dominate certain strategy, we are adding errors to the so-
lution (from Proposition 10.2). Therefore, given a “budder errors we would like to
endure, we are interested in how to distribute it over sévemations ofs-dominance
(one iteration is also possible), so that we can reduce #eeodithe game most.

If we define the original set of strategies and all its subastsodes, then we can
pose following two questions: (1) what is the mininaghat brings us from one node to
another node? (2) given a starting node and séa all nodes with distances less than
o0 from the starting node, which node is smallest in terms ofizet?

To answer above two questions, we must first address follpwindamental ques-
tions:

e When will an arc exist? Obviously, according to the defimtaf nodes, for an
arc to exist between two nodes, it is necessary that one sagerioper subset of
another node, and this arc should originate from the nodesepting superset to
the node representing subset.

e What's the definition of arc cost? An arc connecting two nodg®esents the
action of performing a single iteration éfdominance, and the starting node and
ending node represent the original set and the set afterrdomoé respectively.
From this definition, the arc cost can be naturally defineth@srtinimald required
to complete this action.

From these discussions, we can see that the first questioaigedrearlier can be
posed as a shortest path problem in the graph. Similarl\gebhend question can also be
posed as a collection of shortest path problems.

Although shortest path problems are well-studied and casobesd efficiently, the
primary difficulty in our case is to come up with arc costs. Aswill see later, computing
arc costs, although possible, is non-trivial. Since nundferodes and number of arcs
grow exponentially with number of original strategies, uiackly becomes intractable to
come up with complete arc costs. Therefore, in realistiesasolving for shortest path
can not be performed (again, due to difficulty in acquiringlgpem data).

In the following sections, we first formulate the arc cost pomation problem as a
linear program, and use it as a sub-routine in developindlafpaling heuristic.

10.3.1 Finding Minimal 4 That Dominates Subset of Strategies

Definition 10.1 provides the definition férdominance on a pure strategy. We will
now extend it so that we can definglominance on a set of strategies.

Definition 10.4 Let S; be the finite set of pure strategies for playierand A(S;) be
the space of mixed strategies for playier We define a set of strategids C S; are
-dominated if for eacth € T, 3 0}, € A(S]), S| = S;\ T such that:

) + Ui(O'tl’i 73—1') Z ui(t, s_i),Vs_Z- S S_i. (107)

84

Following Definition 10.4, we can construct an optimizatgmoblem that identifies
the that dominates a set of strategiesThe formulation is listed in Figure 10.1.

LP-A(S, T): min 6

s.t.
o+ Z x(8) - u(s,s—;) > u(t,s—;),VteT,Vs_; €S,
seS\T
Z r(s)=1,VteT
seS\T

0<a(s) <1,VteT,VseS\T

Figure 10.1: LP-AG, T): formulation for findings that dominated, a set of strategies.

10.3.2 A Greedy Heuristic for Forming Domination Path

As mentioned at the beginning of Section 10.3, the majowdilify for finding shortest
path in the strategy reduction graph has been the compusgadiarc costs. Therefore
in practice, instead of computing all arc costs (which is patationally prohibitive), we
would like to find a simple rule for identifying promising arcand compute costs only
for these identified arc. Based on computed arc costs, weheitl decide strategies that
should be pruned.

In this section, we propose a simple iterative greedy heaffgr identifying the or-
der in which strategies should be pruned. At the beginningawh iteration, strictly
dominated strategies are first removed, then for each sngvatrategy, the) required
to eliminate it is computed using LP-A(The heuristic is greedy because it prunes the
strategy with least in each iteration. This simple greedy heuristic is desctiiveFig-
ure 10.2. Two input parameters are requir8ds the initial set of strategies, aitlis our
“budget” for errors.

A simple variant that prunesstrategies in one iteration can be extended from Algo-
rithm 10.2. We use each strategy’s associaténl determined: strategies with leasts.
We then group them into a skt, and use LP-AS, K) to find the reabk that can prune
them within one iteration. The general heuristic is desdim Figure 10.3. Of course,
if we actually compute for all subsets with sizé, K may not be the one with leaét
However, in order to identify such set, exponential numbeenumerations is required,
and this is impractical. Also note that after &ets identified, the real error subtracted
from Q will not be } ", §(k), instead, it will bedx computed using LP-A). This is
exactly why we introduce 8eeDY-K: eliminating multiple strategies at once may incur
less error compared to eliminating them one by one. In thesextion, we will introduce
a way to compute a tighter bound on error once we obtain a eztigame.

85

ALGORITHM 10.2: GREEDY(S,?)
1. n<—1, S"—S
2: while Q > 0do
3: forseS'do

4 d(s) «— LP-A(S", {s})
5. end for

6: ¢« argmingesy 0(s)

7. d— (1)

8: if Q> dthen

9: O—0O—d

;. ST S\ {1}, S (57 S)
11: n«—n-+1

12: else

13: Q0

14:. end if

15: end while

16: return S”

Figure 10.2: Simple greedy heuristic, one strategy (thenatteleasty) is pruned in each
iteration until€2 is all used up.

10.3.3 Computing Tighter Error Bounds

We can reduce several players’ strategy spaces by runniggriim 10.3 sequen-
tially. Let I" be the original game, and I&t be the reduced game. LEE;} and{S.} be
the set of all players’ strategy spaces foandI” respectively. For each playérlet Q;
be the accumulated error actually used IREEDY-K. The total error generated by these
reductions, according to Proposition 10.4, is then(2;. Given that botKS;} and{S;}
are known to us, we are interested in finding a tighter bounttherrror.

Let setM be the set of all NEs in”. Then for eachv € M, itis ane,-NE inT.
This ¢, by definition, is the maximal gain any player can get by uaitally deviating
to the original strategy space. The overall error boundastlaximum of all NEs’ error
bounds, i.e.,

e = max max max {u;(t, 0—i) — ui(0s,0-4)}, (10.8)
where sefT; is defined as5; \ S;.. To compute: with (10.8), we must first find all NEs
for I'". However, computing all NEs, as mentioned at the beginnfrigeochapter, is not
easy, and in many cases, not possible. Therefore, we wdeltdlifind a way to compute
e without having to find all NEs a priori. If this is not possibkg least we would like to
find a way to compute a bound (as tight as possiblej.for

Sinceo is a NE inl”, u;(0;,0_;) > wi(x;,0_;), forall x; € A(S,). For eachi €
andt € T; pair, we associate it to a mixed strategyand we can obtain an upper bound

86

ALGORITHM 10.3: GREEDY-K(S,Q,k)
1.n<1, S"«S
2: while Q > 0do
3 forseS'do
d(s) <« LP-A(S",{s})
end for
K —{}
for j=1tokdo
tj +— argmingesm\k 0(s)
K — {K,t}
10: end for
11: dk < LP-A(S",K)
12: if Q > dk then
13: Q«— Q-
14: St S\ K, S (S S)

© o N g

15: else

16: if Q> ¢, then

17: Q—Q—0(t)

18: S;H_l — Szn \ {tl}v S (S?—Hv S—Z)
19: else

20: Q0

21: end if

22: endif

23: n<+<—n+1

24: end while

25: return S”

Figure 10.3: Generalized greedy heuristic, which is simidaAlgorithm 10.2, but prunes
k strategies in each iteration.

on (10.8):
i(t,0—;) — u; 1?7 —i

> it, o) —ui(o;,0-4)y = 10.9
> maxmaxmax {u;(t,0-i) — ui(0i, 0-)} = € (10.9)

Also note that since max,_cg [ui(t,s—;) — ui(2},s_;)] > maxsem[ui(t,0_;) —
u;(xt, o_;)], we can further relax the bound enpand totally remove sé¥l from consid-
eration:

_ t
€ = mexmax max {wilt, s_i) — wi(x},s-3) }

v

. Y — (2t ,
maX max max {wi(t, o) —wi(z},0-;)}

max max max {ui(t,o_;) —ui(o;,0_;)} =€ (10.10)

v

87

According to (10.10), we can findby solving the following optimization problem:

min € (10.11)
S.t.
€ Z Ul(t, S—i) — Z .T:(SZ) . Ui(Si, S_Z'),Vi c N,t S Ti, S_; € Sl_l-

fo(sl) =1LVieNteT,;
SZ‘ES;
0<azl(s;) <L,VieN,teT;,s €S,

Note that this formulation is very similar to LP-8(T) in Figure 10.1, which is con-
structed according to Definition 10.4. The major differerscthat LP-A() is defined for
a particular playet, but (10.11) considers all players at once.

10.3.4 H-Dominance for Symmetric Games

So far in this chapter, we have assumed that the procedurelofminance is used
to prune one strategy (or a set of strategies) from an agsinétegy space. However,
for a symmetric game, this assumption forces us to miss tipertymity for pruning
strategies from more than one player. In this section, wevdhat if we are given a
symmetric game, and it takeésto prune strategy from one player’s strategy space, then
the accumulated error for pruningrom all players’ strategy spaces is still

Proposition 10.5 Suppose we are given a symmef¥iglayer gamel’, and each player’s
strategy spaces;, is by definition identical. Lef, be required to prune from playeri’s
strategy space, and lét be the reduced game withpruned from all players’ strategy
spaces. Then anNE inI" is a (d; + ¢)-equilibrium inT.

Proof.
From Definition 10.1, we know that 6; € A(S;), such that:

63 + Uz(a'z ,S_Z‘) 2 Ui(S, S_Z'),VS_Z' € S—i-

Let o be ane-NE inT”. Then by multiplying eaclr_, (s_;) to the corresponding inequal-
ity above, we have:
Os +ui(0; ,0-3) > ui(s,0-;)

Sinceo is ane-NE in I, we know thate + u;(o; ,0_;) > u;(6; ,0_;). Therefore, we
have:

(05 +€) +ui(o; ,0-;) > (05 4+ €) +ui(6; ,0-;) > ui(s,0-;)
From definitiong is (d; + €)-equilibriuminT". =

From Proposition 10.5, we know that for a symmetric gamegame identifyd, for
strategys, we can eliminates from all players’ strategy space, without incurring ad-
ditional errors (in other words, the total error we are addio the equilibrium in the

88

reduced game, witk removed from all players’ strategy spaces, is at ndgst Ac-
cording to Proposition 10.5, we can modify Algorithms 10r21d.0.3 respectively. For
Algorithm 10.2, we should modify line 10, so thit} is pruned from all players’ strategy
spaces within the same iteration. For Algorithm 10.3, weutthaodify line 14 and line
18 similarly.

Exploiting symmetry is also beneficial in solving the optzation problem (10.11).
By exploiting symmetry, we can reduce the size of the prolddgraonsidering only one
i, instead of all players i/, since the inequalities will be identical for all playerds8,
for s_;, we only need to create inequalities for opponent strategfiles with unique
strategy ingredients, as mentioned in Section 9.2.

10.4 Numerical Experiments

Following theoretical results from previous sections, wk mow show how iterated
d-dominance can be used as a tool in empirical strategic sisaly

As discussed earlier, the attempt to solve for all NEs gyigdts out of hand even
if we only consider games with moderate sizes. By usktipminance, we would like
to more aggressively reduce players’ strategy spaces savthaan solve the reduced
game with some sacrifice to the quality of the solution. I8 #@ction, we use a reduced
two-player game [Wellmaet al, 2005b] as an example, and demonstrate how strategy
pruning can help in solving real games. We are also intettéstgeeing the difference be-
tween GREEDY and GREEDY-K empirically. In our experiments, we compare®&DyY
against REEDY-K with £ = 2. Since (REEDY can be viewed as REEDY-K with
k =1, in the following discussion, we useREEDY-1 and GREEDY-2 to represent these
two cases.

10.4.1 A Brief Description on the Game

The game studied by Wellmagat al.[2005b] is a travel-shopping game [Wellmanh
al., 2003b] with eight players. Due to the exponential growthl@number of strategy
profiles in number of players, Wellmaat al.[2005b] proposed to approximate the orig-
inal game through hierarchical reduction methods. Fronr trefinition, the two-player
reduction from the original game is obtained by creating #splayer groups, and let
strategy selection in each group be homogeneous. To becéxple assume that the
game is symmetric, and then we let player 1 through 4 play aahetrategy, and player
5 though 8 play another chosen strategy. This is analogolestitog a leading player in
each group make decisions for all members in the group, wddatthen be thought of as
a two-player game.

It should be noted that in order to accurately estimate tipeebed payoff value for
each strategy profile, on average we will need to execute 2Z¥aimulations (per pro-
file). Given that the number of strategies in this game is ¥i8,possible to evaluate all
possible profiles (total number of profiles for the 2-playstuction game is 840), how-

89

ever, Wellmaret al. [2005b] choose to skip some of the less promising profilegden
to make best use of limited computation time.

Due to this reason, when analyzing the game, we will skip &iayegyy if its inclusion
will result in some profiles having undefined payoffs (duglack of simulations). For
a partially explored payoff matrix, if such principle is imived, we should be able to
identify multiple subsets of strategies that are maximahansense that the inclusion of
any additional strategy will result in some unexplored pesfi In the following analysis,
we will only look at the largest such set (with 27 strategies)

10.4.2 Comparison of REEDY-1 and GREEDY-2

In this section, we will start with the 27-strategy set, amgplg GREEDY-1 and
GREEDY-2 on it. By testing both heuristics on this real case, we wWdikle to answer
following two questions: (1) How much better iREEDY-2 compared to GEEDY-1 in
terms of efficiency in pruning strategies? (2) Given a pattadtegy pruning, a tight
bound can be found by using formulation in (10.11), how tight compared to the ac-
cumulated error? One related question is, how tight is thenbdmbtained by (10.11),
when compared to the real equilibrium error?

To answer the first question, we execute botReGDY-1 and GREEDY-2with Q) =
200, and we track the progresses of both heuristics. The cosgadan be seen in Fig-
ure 10.4, where the evolutions of number of strategies gsemsaumulated are plotted
for both GREEDY-1 and GQREEDY-2. As demonstrated by Figure 10.4, we can see that
given the samé consumption, ®EEDY-2 eliminates more strategies tham&EDY-1.
This results shows that, for a strategy pair (A, B), wher@endd (ds required to domi-
nate A and B respectively) are the smallest two among stgrdint is usually the case
thatd g < 94 + 05 (6 required to dominate A and B in the same iteration is smatlan t
the sum ofy 4 andég). Of course, sincé,p > d4(or dp), when trying to identify next
two strategies to be eliminated, it is usually wise to chdegestrategies with simila¥s.

It should be noted that although for this specific numeriecéise orders in which the
strategies are pruned are almost identical for bakE & Y-1 and GREEDY-2, in general
they can be arbitrarily different.

Next thing we are interested in is the error bounds with déffee tightness. The loosest
bound is the accumulated error used by the greedy heuriétitighter bound can be
computed by using (10.11), suppose we have already ideh#fiset ofj-dominated
strategies (either throughR&EDY-K, or other heuristics). The tightest bound can be
found by looking at the symmetric NEs computed in the redy@ede, and for each such
NE, evaluating itg if any player is allowed to deviate to the strategy in the ioaggame.
Although this bound sounds like an exact bound, it is notesiwe are computingonly
for the “symmetric NE”. The issue with computimdor each symmetric NE is again that
we have to solve all the NEs for games with various sizes. Inyncases, GMBIT, the
software tool we use, cannot finish it even given several dag®mputation time. To
help GAMBIT solve these games, we can perturb the payoff matrix sligitig hope this
slight perturbation can help us avoiding possible numeiffecdlties that stop us from
solving the game.

90

w
o

—&— Greedy-1
—@— Greedy-2| |

PR RN NN NN
A o ©® O N A~ O ©
T T T T T T T T

.
I I I I I I I

Strategies remaining
N
T
Il

i
o
T

¢ I' |

, R

I I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200

Accumulated &

o N S [=2] [ee]
T
Ps

Figure 10.4: Evolutions of number of remaining strategiesus accumulated

The perturbation approach is used since the algorittnm&T used in searching for
NEs in a two-player game is Lemke-Howson algorithm [Lemkd Biowson, 1964], a
pivotal algorithm very similar to the Simplex method. Duethe same reason as in the
Simplex method, Lemke-Howson algorithm would suffer frdra humerical difficulties
if the problem is degenerate. Researchers in the lineargmging community have
long suggested the use of random perturbation in resohaeggueracy and this has been
mentioned in the work by Lemke and Howson [1964]. Of coursetysbing the payoff
matrix may introduce some errors to the NEs found, howeféris method can indeed
help us solve the game we cannot solve before, it should biaiwbiie (since our purpose
lies in obtaining an idea on the tightness of various bounds)

In our experiments, we use the following procedure to regaigitry to solve a game
until it can be solved within a predetermined amount of time:

1. Givena gamé&, we randomly perturb its payoff matrix by adding a value @méy
drawn fromU |0, P]* to eachu;(s), for alli € N and alls € S (it should be noted
that in this step, we always apply perturbations to the palpayoff matrix).

2. Solve the game with Lemke-Howson algorithm, waitfoseconds, if the game is
not solved, terminate the solver and go to Step 1; otherwiddlee process.

The implementation of this process indeed resolved the nuoaldifficulties we have
had earlier. In our implementation, we €t = 25, and the maximal amount of time
spent in solving a game i835.7 minutes (325 instances are generated) for games with
18 strategies. With the 2-player game solved at differexéssiwe can now provide a
complete summary on the behavior of thek&Dy heuristic. Different bounds for the

1U[a,b] is a uniform random variable {a, b]

91

reduced games generated brEEDY-1 and GREEDY-2 are summarized in Table 10.1.
These relationships are also plotted in Figure 10.5. Naeftr the 18-strategy game,
since only strictly dominated strategies are eliminatée, NEs found in it shouldn'’t
contain any errore,., should be 0), however, since we randomly perturb it in order t
solve for the NEs, minor errors are incurred.

|S| | GREEDY-1 | GREEDY-2 | Tighter bound| €.y
18 0 0 0 0.93
17 14 - 14.67 0
16 31 17.09 17.09 0
15 58 - 27.11 0
14 82 44.2 27.11 1.06
13 111 - 28.43 18.02
12 138 77.59 28.43 20.37
11 - 77.59 28.43 18.67
10 169 - 30.12 0
9 - 110.58 32.99 0
7 - 110.58 12.18 0
6 - 110.58 12.12 0
5 - 110.58 3.74 0
4 - 122.76 3.74 0
2 - 171.6 48.84 20.18

Table 10.1: Summary of various error bounds at each stra¢egV.

10.5 Conclusion

The explosion of strategy space we encountered in real warlde handled by either
reducing the number of agents, or as stated in this chapteeducing the number of
each agent’s strategies. By combining these two types ofteth methods, we are able
to treat a fairly large empirical game, with 8 agents, anchesgent with 40 strategies.
Any attempt to directly solve such game without exploitirygnsnetry and reasonable
reductions is hopeless. After applying various reductemihiques already investigated
in the literature, the game is reduced to a 2-player, 2tegfyagame. However, to enable
the search for all NEs, we must slash some additional stetegystematically. The
methodology mentioned in this chapter provides a way toexvehihis.

While computing all NEs is empirically infeasible even fa2-glayer game with over
14 strategies, we can apply the random perturbation teabrfigquently mentioned in
the literature and approximately solve the game. By compgahie bounds we computed
to the real error, we can see that the tighter bound we suggjesSection 10.3.3 indeed
provides a much closer bound on NE errors. This implies thaeave obtain a list of
pruned strategies (which can be determined either by thezlgieeuristic suggested here,
or any other approach), a much tighter bound can be found.

92

Error (bound or actual)

180

T T T T
—&— Greedy-1
—@— Greedy-2
160 Tighter Bound
—4— Actual € nax
140 .
120} ¢
100
80
60
]
40
T—“
20 N PN 41 0_‘—‘—{) I
o&=¢l¢¢“*l ¢
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Strategies remaining

Figure 10.5: Error bounds at each strategy level.

93

CHAPTER 11

Task Allocation for Dynamic Information Processing
Environments: A Motivational Example

Designing market mechanisms for a complex environmenffisdt. Firstly, the de-
signer has an infinite design space; secondly, even if thigrspace can be restricted, it
is not clear how to properly evaluate each design, sinceghewf each design inevitably
involves how each agent would react to it.

In Chapter 9, we have described a collection of techniquasdan be used in ad-
dressing these issues. The ultimate goal of these toolssisdatifically analyze a given
scenario and propose a reasonable solution. Depending ormswising these tools, the
so-called “solution” may have different meanings. For jggrating agents, a “solution”
may be a suggestion about optimal strategy (in game-thearettings, a NE). For the
market designer, a “solution” is the market mechanism thuinozes certain perfor-
mance criterion, e.g., social welfare. In this chapter, aketthe market designer’s posi-
tion, and we use aresource allocation problem in generiamhyminformation processing
environments to demonstrate how important design de@stan be made by using the
tools suggested in Chapter 9.

This chapter is organized as follows. Section 11.1 presebisef introduction and
provides motivation. Section 11.2 describes the scenagian interested in and also its
corresponding abstract model. In Section 11.3, we desagbat strategies we designed
for the scenario. Section 11.4 presents the setup of the watignal experiment and
also related analyses. Finally in Section 11.5, we condhbdesection with our remarks
on the methodology and the scenario.

11.1 Introduction

One important problem resistive of centralized controhteques is managing the
allocation of information-processing resources withinyaamic, knowledge-intensive
environment. Such resources (e.g., analysts, compugtiacilities, sensors and other
data collection assets) are typically distributed geolgiagly, may be owned by different

94

organizations (private and public), and may be subjectterioperability constraints. In
practice, this leads to great inefficiencies, and an acaval lof information processing
well below potential aggregate capacity. Advances in ngting and inter-operation
standards promise to facilitate flexible allocation, bwlieng the potential gains will
require a suitable global planning methodology for the &lkication problem.

Our work evaluates the potential of applying market-baggatr@ches to dynamic
task allocation problems in information-processing emwvinents. In general, a task allo-
cation problem involves multiple independent decision ensKi.e., agents), where each
agent is assigned certain number of tasks and each task mayifi@rent resource re-
guirements and value associated with it. The problem ismytianeaning that besides
initially assigned tasks, agents may be given new tasksrdigadly. The problem is also
decentralized, since this task-related information is éfadlt known only to each agent
and each agent makes its decision independently (basedsonftirmation), aiming at
optimizing its own objective. As described in Chapter 8,sthelifficulties (decentral-
ized control and distributed information) are exactly tne®that can be best handled by
the market-based approach, and these characteristicgatedtine study of market-base
approaches in this scenario.

11.2 Task Allocation Scenario

In the remainder of this chapter, we describe a generic thstasion problem, and
our investigation of a market game scenario addressingtelar configuration of this
generic problem. The model is specified abstractly, with axiqular interpretation ap-
plied to tasks or resources. Intuitively, the tasks comwespto information-gathering or
processing assignments, and the resources to factorshgngan labor or expertise, com-
putation cycles, sensor operations, communication &ietsyithat contribute to achieving
the tasks. The model generalizes a scenario we develoggdaily for the information-
collection domain [Chengt al,, 2004b], incorporating the extension to include dynamic
tasks and task dependency.

In Figure 11.1 we can see a high-level graph illustrating #genario. On the left-
hand side are agents, each endowed with certain numbeiksf(takich can be assigned
at the beginning of the planning horizon, or can be arrivipgainically later) where de-
tails on these tasks are assumed to be known only to the agairigthese tasks. On the
right-hand side are resources, categorized by resoures fgpg., computing capacity,
capital, and human resources) and time spans in which tlesseinces are to be con-
sumed. In a centralized setting, these resources are t@tbbg a central planner. In a
decentralized setting, as in our case, the rights to use tkesurces should be exchanged
through a set of pre-defined market mechanisms. Detailseoprtiblem are described in
the next section.

95

&
&

—

A o) L 1)

w7

A e e N A%
Agents Markets

Figure 11.1: A high-level illustration on task allocatioroplem in a decentralized set-
ting. Agents on the left-hand side are assigned certairs taslependently, and required
resources must be obtained through the corresponding egeba

11.2.1 Dynamic Task Allocation Problem

In the dynamic task allocation problem, eachNfagents may accrue value by per-
forming its assignethsks Agent: is initially assigned a set df; tasks (we refer to tasks
assigned initially astatic taskys Agents operate overanning horizorof H discrete
time periods, after which the scenario terminates. Durexgheof thesdd time periods,
dynamic tasks may arrive randomly according to a fixed digtron. To finish a task we
need to determine a period which is not later than the suppléadline, and we obtain
the rights to use requiragsourcesn that specific period. Also, the completion of a task
may require some task to be finished first. In general a taskadepgnd on multiple
tasks, however, in the case we study, we assume each taskddepeat most one task.

In Section 9.3 we have introduced a simple resource allmecatenario for the pur-
pose of introducing several frequently used agent desigiptes. The scenario studied
here is more complicated because some tasks arrive dynimathtasks are defined
with deadlines, and a task may depend on some other taskreB&&go into the detail
of the problem, we first introduce important parameters thatracterize a task in the
scenario studied here:

ID A uniquely identifying number.
Priority The value of the task, in monetary units.
Duration The length of the task, in number of time units.

Deadline A time slot index indicating the latest time period when ttask should be
finished.

96

Required resourcesA collection of types and quantities of the resources necgss
finishing the task.

DependenciesThe ID of the task this task depends on (it is possible for & tase
independent).

A task may be started in any time period after the completioth® task it depends on
(if any), and must be completed at or before the given deadiinve choose to finish it).
Also, the agent must possess the required resources fouthgah of task execution.

The major challenges of this problem are the dynamic arat/tédsks and the alloca-
tion of resources in a decentralized manner. Since soms taskassigned dynamically,
we must incorporate those tasks in the state space desggrtit@rproblem, thus quickly
exploding the state space. Added to this difficulty is theed¢@lized way of allocat-
ing resources; in most cases, this implies that the exaotiress that will be assigned
to this agent will depend on other agents’ actions. In thisptér, we are interested in
designing market mechanisms and agent strategies thadpable of handling these two
challenges.

11.2.2 Market Structure

In this section, we would like to propose a design for the rafarkechanisms to
be used in our scenario. We can build the market incremgniglistarting with the
case where each agent is only assigned static tasks. Ircnargo, the most promising
candidates are ascending auctions and sealed-bid aucAsrergued by many authors
[Cramton, 1998; Ausubel and Milgrom, 2002], in cases whelkision is not a major
concern, ascending auctions are more favorable since tigegnare practical and are
able to provide more information to the participants thioutgrative bidding process.
Chenget al. [2004b] demonstrate the use of simultaneous ascendingpaadiSAAS)
in solving static task allocation problems. In this setfify the rights of using each
type of resource in each time period, an ascending auction is established. Usually, an
ascending auction closes if there is no bidding activitydevhile. The planning horizon
will not begin until all auctions close. To simplify the ingshentation, we assume that
each ascending auction will open for a fixed amount of timei¢ivirs sufficiently long
for agents to finish reasonable number of bidding iterajioafser which it will close,
and all agents can begin planning their own tasks.

When bidding in each SAA, agents may offer to buy various ¢jtias at various
prices. The auction enforces a “beat-the-quote” (BTQ),rnweich dictates that admis-
sible bids must offer to increase or maintain the number afsuhe agent would be
winning at the currently prevailing price, @rice quote. This BTQ rule is sufficient
to ensure that prices only increase, hence the term “asogrdiction”. At the end of
the designated bidding interval, the auction closes, atkxcits available units to the top
bidders (breaking ties arbitrarily), and charges all wisngith the price offered by the
lowest winning bid. At closing, all bids (fulfilled or not) aremoved from the auctions’
order books. If there are unsold units (which implies thatdlosing price for this auction
would be zero), these units are removed from the system.

97

In the case where agents are assigned both static and dytaesksc using only SAAs
is no longer sufficient. This is because all resources antag®ained were based on
the requirement of only static tasks (plus some expectatiothe arrival of dynamic
tasks); when a dynamic task indeed arrives after the plgnmimizon begins, the hold-
ings of resources in most cases may not meet the requirefehtsnewly arrived tasks.
Therefore, we should provide some market mechanisms foures exchange after the
planning horizon begins, so that agents can exchange msoifrincoming dynamic
tasks change their plans. Unlike first phase of bidding, iictvlagents are bidding for
resources owned by an auctioneer (through SAAs), the squuamk of bidding involves
the exchange of resources among agents, thus each ageneradyulger and a seller at
the same time. The most popular market mechanism for thi ddipurpose is contin-
uous double auctions (CDASs) [Friedman and Rust, 1993]. fyue of auction is both
“double” and “continuous” since all participating agengde both buyers and sellers
at the same time, and auctions are cleared continuouslyoasasoa match is found.

Implementation-wise, this two-phase bidding process esden in Figure 11.2. For
each (resource-type, time-period) pair, an ascendingaauis set up in the first phase
(i.e., the preparation phase), SAAs operate until the atdattime line, close, convert to
CDAs, and reopen at the beginning of the horizon. A CDA acbpy or sell offers from
any agent, and whenever a buy bid is received that is com@atith an existing sell bid
(or vice versa), the offers transact immediately, tramsfgrthe corresponding quantity
of the goods (right to use the resource in the time periodyyelsas money balances.
Offers that do not match existing bids are retained in theéianis order book, until they
subsequently transact with new bids, or are replaced orvedoy the original bidder.

c
(@]
N
5]
<
Static Tasks kS Dynamic Tasks
=4
c
k=)
Q
| | @ | | | |
>
1 o2 | H
Preparation Phase Planning Phase
SAA CDA
SAAs Open SAAs Close CDAs Open CDAs Close

Figure 11.2: Two-phase markets. SAAs are used for the “pagipa phase” where each
agent drafts its initial plan. After the “planning phasegbes, all SAAs are converted to
CDA. The planning is “online”, therefore agents will receilynamic task information,
market updates, and have to submit task commitments as timgegsses.

Note that the problem ienline meaning that the agents must commit decisions se-
guentially. In particular, they must determine their use@asfources in periogd before
time period;j begins. As a result, all auctions related to time peypiathould close right
before time period. Also, if an agent wants to commit the execution of certaskta
in time periodj, they must make the commitment before time perjodit is agent’s

98

responsibility to ensure that all requirements (includiragh resources and dependency
requirements) for the task are met before submitting thensibment. In our case study,
we assume that commitment cannot be retracted once sudmite any commitment
fails to exercise, this agent will be penalized.

As described in Section 9.2, we implement these marketgukim AB3D market
game system. The specification of this two-phase auctiorBiBAauction scripting lan-
guage is presented in Figure 11.3. The script begins withiassef assignment(et)
statements, initializing parameters controlling the euncs bidding and clearing poli-
cies! Together, these specify a form of ascending auction. Theofate script com-
prises a set of rules (employing thaen construct), specifying the flow of control by
defining actions to be taken conditional on parenthesizeditions becoming true. In
this case, all conditions are temporal predicates, in ose also contingent on receipt of
a valid bid. Times are specified in milliseconds (e.g., 1Z06fpresents two minutes),
and built-in variables such a&s ne, ganeSt art Ti e, andl ast Quot eTi ne repre-
sent time points maintained by the auction state and expost script interpretation
engine. Note in particular that two minutes after game sthet third rule is executed,
clearing the ascending the auction and modifying the angierameters in order to set
up a CDA policy for the remainder of operation. The CDA clogethe start of the period
corresponding to the slot index of its associated resource.

11.3 Agent Strategy

There are several important components in designing ageategies for this sce-
nario: (1) collecting latest information, (2) deciding oesce-bidding strategies for both
SAAs and CDAs, and (3) finding task committing policies. Natt@ahow we design the
agent strategies, these components must be included. Bagbese requirements, we
put in place the following skeleton for designing agenttstyees:

1. Setup: Obtain problem-related information from the game servay.(@umber of
planning periods, number of resources, and length of matkases).

2. Update: Update transactions and price-quote information from fencauctions.
Update dynamic task arrivals from the system.

3. Compute Commitment Bundle: As already discussed, the commitment for ex-
ecuting a task in periog must be submitted no later than the beginning of the
committed period. However, we don’t want to submit the cotmmant too early,
either, because when possible, we always want to make oisi@exbased on lat-
est information. Therefore, a task commitment plan willyoloé computed if the
time remaining in the current period is below a specifiedshotéd. For the same
reason, we will send in commitments incrementally. Only oatments that are
scheduled in the next period will be sent in.

1Several of these are described in a paper about the AB3Dtisgrianguage [Lochner and Wellman,
2004]; further documentation is availablehatt p: / / ai . eecs. um ch. edu/ AB3D/ .

99

def Aucti on twoPhase {
set auction_bi dlanguage pq
set sellerlDs SELLERID
set buyer| Ds BUYERI D
set bidbtqg 1
set bidbtgstrict O
set bidbtgdelta 1
set matchingfn uniform
set pricingk O
set bi d_dom nance_buy none
set bi d_.dom nancesell none

when (time = ganmeStartTi me + 5000)
{quot e}

when (time = |l astQuoteTime + 20000)
{quot e}

when (time = ganeStartTi me + 120000)
{cl ear;

set sellerl Ds BUYERI D
set matchingfn earliest;
set bidbtq O;
flushBi ds; quote}
when (time > ganeStartTinme + 120000
and val i dBi d)
{cl ear; quote}
when (time = gameStartTime + 120000 + sl otlndex * 120000)
{cl ose}

Figure 11.3: AB3D specification of a resource auction. Tle thnd fourth rulesyhen
clauses) trigger the change from ascending auction to CBekraarket.

4. Compute Bids: Compute and submit bids for active auctions.

5. Repeat: If end of horizon not yet reached, go to Step 2.

The first two items are simple bookkeeping steps, where thetagprises itself of the
current game state. The substance of the agent’s stragsgy Inow it determines its task
commitment plan, and how it bids in resource auctions basetthat plan. We defined
two specific strategy variations. The first is a straight@amdvgreedy strategy, which is
easy to compute but appeals to numerous and unrealistidifimg assumptions. The
second employs the marginal-value based strategy as leddrn Section 9.3, which
improves decision quality at the expense of more complexpeaation.

11.3.1 Greedy Strategy

In the simplest strategy we consider, the agent computgsafeaitial gaineach task
brings in, calculated by summing the value of this task aredgbtential gains of all

100

its dependent tasksThe agent then sorts tasks according to the potential gstiansing
from the greatest. For each task considered, it deterntieasddsirable committing period
that minimizes anticipated cost of resources. A committegod is feasible if it is before
or at the task’s deadline, and after the scheduled commttaiéask on which it depends
(note that if the task we considered does not depend on akyttes earliest time we
can commit it is the first period). The anticipated cost of gipalar resource at a given
time slot is its current ask price (the part of the price quotkcating the price to buy)
at auction, or zero if the agent currently holds the resoanzehas not committed it to a
previously considered task.

To determine the offer price for a particular unit of res@jrihe agent calculates its
value for the task using the resource, subtracting the askgof resources that it needs
to procure. It then divides this surplus among the resouaféezing at the prevailing ask
price plus the associated fraction of surplus. Agents phacemal buy offers even for
resources that they have no current use for, anticipatiagptssibility of dynamic task
arrivals or resale opportunities.

The bidding policy for buy offers is basically the same dgrthe first (SAA) and
second (CDA) phases. In the preparation phase it recaésulatls upon receiving new
price quotes, adjusting if necessary to satisfy the BTQ. rlitethe planning phase, it
reconsiders bids continuously, and does not need to pedayBTQ adjustments.

In the preparation phase, the agent cannot sell any resourcéhe planning phase,
it offers to sell any resources from its holdings that it does project to use, based on
the task planning process described above. It places $als@it a predetermined reserve
price.

Finally, the agent determines its commitment bundles basetthie most recent cal-
culated task performance decisions, just prior to the stagach period. Once a task
is committed, the resource holdings will be adjusted adogiy to reflect the usage of
resources.

11.3.2 Marginal-Value Bidding Strategy

Marginal-value bidding strategy introduced here is veryikir to the one described
in Section 9.3, except that we also have to include the taskutting periods in the
completion problems we solve. The modified completion probis presented in (11.1),
with following notation.Q andR are the set of periods and the set of resources respec-
tively. T, and7, represent the set of static tasks and the set of dynamic. teskseach
taskt, M, , is the amount of resource typeequired,D; is the deadliney, is the value,
and E; is the parent task it depends on. Lgt= 0 if taskt doesn’t have a parent. The
auction is identified by the pafr, ¢), withr € R, andq € Q. For each paifr, ¢), letH, ,
be agent’s holding for goods imr, ¢), and P, , be the current asking price. The decision
variables aré, , andz; ,. b, represents units df-, ¢) bought.z, , is binary and equals

2If we define nodes as tasks, and use the task dependenciesiectthese nodes to a tree, grutential
gainat a node is just the sum of this task’s value and all child sbgetential gain.

101

1 if taskt is scheduled in periog, O otherwise.

max STov D wmg— Y by Py (11.1)

teTs Ty qeQ r€R,qeQ
s.t.
g <1 Ve T
q€Q
th,q‘q <D,,Vte TsUTd
q€Q
Z Tpg - Myy < Hpg+bq,V7reR,qeQ
teTs Ty

q q—1
th,iSZxEt,i7Vt€TSUTd7qEQ
=1 =0

In this strategy, agent’s bidding behavior is divided ink@ tphases, just as indicated in
Figure 11.2. In both preparing phase and planning phasegeet bids according to the
marginal values computed using (11.1) as subproblem. Thginahvalues are computed
similarly as described in Section 9.3: Then) marginal value of goods-, ¢) = the value
with EXACTLY (H,, + n) goods(r, q) — the value with EXACTLY (H,, +n — 1)
goods(r, ¢), whereH,. , indicates the current holding of goo@s ¢). Similarly, one can
compute thé€ —n) marginal value.

The difference between these two phases is that in CDA, sihogost one unit of
resource is guaranteed at the current asking price, we laidea about the cost of two
or more units of resources. As a result, when solving (1h1he planning phasé,. ,
is assumed to take only binary value. A consequence of thigisduring the planning
phase, we only need to compute thel) and(—1) marginal values. Another important
difference between these two periods is that task commisnes represented hy ,,
are only submitted during the planning phase. As a resulspme later time periods
in the planning phase, some tasks may already been comruttsine earlier periods;
therefore, when solving (11.1) with committed tasks, weehivfix the corresponding
z;, 10 1 or 0 depending on whether taskas been committed or not.

If marginal values are used as bidding prices, it's posditdé for some goods, the
buying price (i.e.(+1) marginal value) might be higher than the selling price (j-e1)
marginal value). Since the type of auction used in the second phase is CDA, lsids
with buying price higher than selling price will be transtimmediately. This type of
behavior is undesirable from both agent’s and market desgpoint of view. For the
agent, failing to put bids into action implies that it is gigiup chance of getting more
value. And for the market designer, with a collection of agdailing to participate in

3]t might not be straightforward why the marginal values fairagle goods may be increasing, given
that agent’s value is obtained through the fulfillments ekta The reason for this to happen in our case is
the dependency of tasks. To illustrate this, suppose welag one type of resource, and two tasks, task
A and task B. Let task B depend on task A and have higher valugp@&e both task A and task B request
one unit of resource, then the marginal value of the secoitdnilhbe higher than that of the first unit,
because task A (which has lesser value) must be finished first.

102

the trading every once in a while implies the deterioratibthe market efficiency. To
counter this issue, we will introduce shading into agentislimg process.

When trying to come up with the bid for each individual auatiove will check if
we have buying price higher than selling price. If this is tied case, the bid will be
submitted without modification. However, if the buying @riis higher than the selling
price, we will shade down the buying price and increase thieg@rice so that modified
selling price is higher than the buying price. Since ther many possible ways of
designing shading schemes and there is no compelling arguriech method should
prevail, we will just use the simplest scheme, describedbews. In Figure 11.4, we
assume that we are about to submit two bids, one for buybngi-1), and one for selling,
(s;, —1), whereb;, s; stand for the original buy and sell princes, dnds; stands for the
modified prices. The tuplép, q) is the bid string wherg is price andg is quantity.
Positive quantity stands for buying while negative quargtainds for sellingé andj are
the user-specified constants. In our experiments, weé &s6.5 andj = 1.

subm t (bl,—i-l), (SZ,—I)

Figure 11.4: Simple shading procedure for the marginalevattategy.

The commitment package will only be computed when it is wittl seconds to the
next period (remember, the length of a period is 120 seconHsis limitation is used
here because we believe that the agent will make better coomani decision with more
information.

11.4 Numerical Experiments

11.4.1 Setup
Numerical data used in our experiment is defined as followed:

e Time periods: 5 (2 minutes per period)

Number of agents: 4

Number of resources: 4

Capacity of each resource: 4

Number of static tasks: 6

103

e Number of dynamic tasks: uniformly distributed between d &n

e Task attributes:

— ID: a unique sequential number that identifies the task.

— Arrival time: for static tasks, this attribute is meaninggefor dynamic tasks,
it’s distributed uniformly between 2 and 5.

— Value: for each static task, the value uniformly distrimbbetween 100 and
1000; for each dynamic task, the value uniformly distrilbiietween 100 and
1200.

— Deadline: uniformly distributed between 2 and 5.
— Resource requirement: each resource is required with pildigd®.5.
— Task dependency:

x For static tasks: it will depend on task between 1 and (ID-ith proba-
bility 0.5.

x For dynamic tasks: a static task will be required with prolisi®.5.
— Duration: fixed to one period for simplicity.

The market environment is provided BYB3D, a configurable market environment. The
auction services and the communication protocols are atsoged byAB3D.

11.4.2 Dynamic Task Allocation Scenario in GDL

In Section 9.2, the GDL is introduced as a general languagdédscribing market
games. For completeness, we include important componéttigsscenario, written in

GDL, at the end of Appendix B. For detailed lists, pleaserr&fe~igure B.1, B.2 and
B.3.

11.4.3 Analysis and Discussion

In this section, we will present the result of our computadioexperiments. The
design of the experiments aims at answering following issue

e How good is the marginal value bidder compared to the simipledy?
e What is the value of second-phase auction (i.e., CDAs usttiplanning phase)?

e What is the benefits of shading for the marginal value bidd@&ses shading actu-
ally result in more transactions?

To answer the above three questions, we must first introduagety of agent strate-

gies based on Section 11.3.1 and 11.3.2. Greedy strategygied in Section 11.3.1
is included in the strategy portfolio without additional dification. However, for the

104

marginal-value strategy described in Section 11.3.2, wiecvgate three variants out of
this basic framework. The first variamt]ARG (w/ shading)is the most complete ver-
sion, with all the features as described in Section 11.32e Jecond varianMARG
(w/o shading) is the marginal value strategy without the shading procedescribed
in Figure 11.4, i.e., all bids generated from the margin&l@aomputation routine are
submitted without modification. The third and the final vatiMARG (w/o CDA)is the
most crippled strategy version, since it skips bidding i phanning phase altogether. It
still updates dynamic task arrivals, and the commitmergstso computed dynamically,
however, it assumes that bidding in the planning phase ialtmted.

With these agents strategies, we must also define relate stthe market’s perfor-
mance against centralized planning. However, since thet gkabal solution is extremely
hard to obtain due to the dynamic nature of the problem, wiscarhe up with upper and
lower bounds on the performance ratio (between market nmésinaand global planning)
instead.

e Percentage versus static global sumThe static global sum is computed by col-
lecting holdings and task-related information from all mige and assumes that all
dynamic tasks are treated as static tasks, meaning thaat@épnown to the planner
a priori. This measure will serve as the lower bound of theg@etage versus real
expected global sum. This measure is very similar to the coatipn of the value
of perfect information in Section 3.5.3. In this measure reraove the stochastic-
ity and also the decentralization from the problem. The em@thtical formulation
of this problem is just (11.1), with, , fixed to 0, andl; and7; replaced by the set
that contains all agents’ static and dynamic tasks.

e Percentage versus rolling-horizon global sum:The rolling-horizon global sum
is computed by assuming that the solver knows the final coeabinoldings from
all agents. Also, all agents’ static tasks and “revealediadyic tasks up to current
period are assumed to be available. The rolling-horizobajlsolver will compute
the commitment plan period by period, with appropriate dayitatask information
(all dynamic tasks arriving beyond current period are géats non-existent to the
solver). Note that as in the individual agent’s case, théglsolver only commits
tasks that are due in the next period.

The results of the experiments, in terms of above measuespyanmarized in Table
11.1.

Strategy (%) v.s. static (%)_v.s. rolling- Number. of
global sum horizon global sum transactions
Greedy 50.19 64.1 78.2
MARG (w/o shading) 70.35 86.07 72.9
MARG (w/ shading) 77.41 93.09 82.8
MARG (w/o CDA) 71.41 85.99 53.6

Table 11.1: Performance comparison.

105

With the results in Table 11.1, we can then answer the threstouns raised earlier
in the section.

e From the result we can see that all versions of marginalesalsed agent strategies
outperform simple bidder. We are not claiming that margiadle bidder is the
best strategy for our problem. However, given that margiaslles can be easily
obtained, in most cases it can be used as the first reasomaiésy.

e The value of the after market can be shown by comparing tHenpeance between
MARG (w/o CDA) and MARG (w/ shading). In terms of the perceygaversus
both static and rolling-horizon global sum, MARG (w/ shagiperforms better
than MARG (w/o CDA) by around 8%. This 8% can be viewed as theeheone
can get by reacting adaptively to the dynamic events.

e From Table 11.1 we can see the the introduction of bid shadauges 13% in-
crease in the number of transactions and around 8% incnedlse system utility.
This can be explained by the complementarity in the resoteqairements and
the dependency among tasks. The dependency among tasks mesometimes
increasing marginal values. And the complementarity inrédseurce requirements
implies that if the agent constantly fails to send in bidsduse of self-transaction,
even if it does manages to get some of the goods it bids, it migh out to be
worthless because other required resources cannot beggerth

11.5 Conclusion

The main objective of this chapter is to explore the use ofketamechanisms in a
highly decentralized scenario. As already discussed imique chapters, market-based
approaches can be used in resolving difficulties that aginated from the decentral-
ized nature of the problem. As discussed in Wellretial. [2003a], the choice of market
mechanisms and agents’ strategic behaviors may resulluti@oinefficiencies. By con-
trolling our computational experiments properly, we caaniify various possible reasons
that contribute to the efficiencies or the inefficiencieshaf inarket-based approach.

As demonstrated in this chapter, for the dynamic task ailocgproblem studied, itis
important to create an after-market that allows agents jusatheir respective resource
holdings according to the latest received dynamic tasksveder, even with after-market
created, if an agent does not carefully check its biddingatseh in the specific market
mechanism, even a small glitch may cause significant losSiaescies.

106

CHAPTER 12

Market-Based Approach: Conclusions and Future Work

The second part of this thesis is devoted to issues relatibe tase of market mecha-
nisms in decentralized resource allocation problems. @n&focuses on various issues
related to the use market games in evaluating market mesthanChapter 10 focuses on
aggressive strategy pruning technique that is useful inegmeoretic analysis. Finally,
Chapter 11 focuses on the analysis of the use of marketsviimgalecentralized resource
allocation problems.

12.1 Summary of Contributions

In Chapter 9, we gave an overview on a collection of tools @meuse in analyzing the
performance of market mechanisms in market games. Thafipsirtant tool discussed is
the Game Definition Language, which is part of the AB3D mageshing platform. This
language allows us to use AB3D as a standard platform foridgfand executing market
game simulations, thus eliminating one of the most time gonsg parts of setting up
numerical experiments. Next in Chapter 10, we introduceaimnessive strategy pruning
technique. Although weaker than the usual strategy donsmaoncept, it is shown to
significantly reduce the size of the game without introdgcangnificant errors to the
solution. With the help of this strategy pruning scheme, am quickly obtain a reduced
game, solve it, and obtain a tight error bound on the solufitve development of tools of
this kind (also see Wellmaet al.[2005a]) can be used in helping researchers analyzing
large games empirically (for example, see Wellnearal. [2006] and Kiekintveldet al.
[2006]).

Finally in Chapter 11, we studied a challenging dynamic tdkication problem. By
modeling this problem as a market game, we can answer matiyatjua and quantita-
tive questions empirically by executing numerical expets.

107

12.2 Future Work

The proposed future work follows the two trends studied exgbcond part of this the-
sis. On the study of game-reduction techniques, we aresisttenl in carrying out a more
extensive study on the effectiveness of the strategy-pgut@chnique on a wide variety
of games, by using the game generator, GAMUT [Nudelmiaal., 2004]. We believe
this is the first step towards developing a class of more apeed game-reduction tech-
niques. Ultimately, we are interested in exploiting gannacttires other than symmetries.

For the market-based approach, we are interested in camgitive study of the dy-
namic task allocation problem. Our study of the particutzrario in Chapter 11 only
answers some qualitative and quantitative questions. Teertkee scenario more realis-
tic, we can introduce a wider variety of strategies, andgrerfa more extensive search
in terms of classes of mechanisms (one such example is dtutdiorobeychiket al.
[2006]). Ultimately, by building better game-estimatomslagame-solvers, which can all
be executed automatically, we are interested in buildingtaoktools that can greatly
reduce the labor required in testing and discovering masksed solutions, and discov-
ering insights in market and strategy designs.

108

APPENDIX A

Adaptive Signal Re-timing

Adaptive signal re-timing in INTEGRATION-UM is an online cle time and phase-
split optimization heuristic, as described in Wunderli@é®94]. The underlying theory
for this approach is based on Webster and Cobbe’s model fjdfeaisd Cobbe, 1958].
Underlying analysis will not be explained in detail herestead, the implementation of
the algorithm as embedded in INTEGRATION-UM is presented.

The automatic signal re-timing algorithm determines sidiming plans based on
current flows on the approachdsading to the signalized intersections. (In this appen-
dix we use the term “flow” to represent the volume of traffic otink or approach.)
The re-timing algorithm in INTEGRATION-UM is invoked repteally at user-specified
intervals, and proceeds in three steps:

1. Estimating link flows: for each signalized intersection, the equivalent flow for
each link is estimated by combing average incoming flow amulaage size of the
standing queue. The following formula is used for this pggo

v = 4 g, (A1)

wherev?® is the estimated flow on link, f is the exponentially smoothed average
flow on link a, andq® is the exponentially smoothed average size of the standing
queue on linka.

Both average incoming flowf() and average size of the standing queyfg 6f
link a are obtained by periodically performing the following expatial smoothing
updates:

f* = 0.75f" 4+ 0.25f; (A.2)
q* = 0.9¢*+0.1¢%, (A.3)
where f is the number of vehicles flowing into linkduring the interval between

smoothing updates, argd is the size of standing queue on linkduring the same
interval.

Lif a signal timing plan is used at more than one intersectithimthe traffic network, the approach is
defined as the set of links coming into these controlled setetions during the same phase.

109

2. Computing critical values: based on the above flow data, the procedure will com-
pute a measure (i.e., critical value) that represents tlhéwe congestion of each
link. By using this measure, the procedure then computele dgagth and the
allocation of green times.

For each linka leading to the intersections controlled by the signal tignghan,
a critical value (measure of congestigjf)is computed as the ratio between esti-
mated link flow and link’s saturation flow:

Ve
ya - ~a’ (A4)
S

wheres® is link a’s saturation flow rate (as defined in the network topologyrdefi
tion).

Let the setd,, consist of all the links that have the right of way during phaof
the signal under consideration. The critical value for ghas then the maximal
y® of all links in A,:

ypZHwX{gfdy?JMm}, (A.5)

whereymi, is a predefined minimal critical value.

The combined critical value for the signal timing plan, dexabbyY’, is then the
sum of values ofj, over all its phases:

Y=Yy, (A.6)

3. Computing cycle time and green time for each phasethe new cycle time for
each signal timing plart/,, is computed from its corresponding critical valyg,
and the sum of lost time (i.e., yellow time) for all phaskésForY < 0.95,

(1.5L +5)

1=y Cmexks Cin (A7)

C, = max{min{

Otherwise (', = Chmax- Cnin @aNdChax are the specified minimal and maximal cycle
times, respectively.

After C, is obtained, the length of green time for all phases can bepoted ac-
cordingly. g,, the length of green time assigned to phasis determined by

9 = £(Co — L) (A8)

110

APPENDIX B

Game Definition Language for Market Games

As discussed in Section 9.2, one of the important functigaalof the market gam-
ing platform is to generate common and agent-specific inftion. According to the
previous discussions, these information may be hieraathitd probabilistic. Therefore,
in order to effectively generate these information, it musteasy to specify hierarchical
structures and random variables.

Gam Definition Language (GDL) is mainly designed to meetdta® requirements.
On top of these two requirements, GDL is also designed to nmd&emation generation
more efficient. Also, GDL must be sophisticated enough tcegetie some complicated
features (e.g., the generation of random sequence andtmxeofl simple arithmetics).
To meet all these design goals, and without complicatingegdesign too much, we
choose to build GDL based on XML.

One of the major benefits of XML is its inherited ability in regenting information
hierarchies. Based on XML, we can then realize most of the@lnoentioned design
goals by embedding commands in the XML tags, as illustrasddlows:

1. Tree structure generation. This type of task will generate results in a hierarchical
manner. The parser will export any tag it encounters, si@ftor the root node,
unless it belongs to specify to execute one of the followinghmand. Usable
commands include “for”, “var”, “seeds”, “distribution” declare”, “endowment”,
which will be explained later.

2. Pattern-based value generation.This type of task will generate the text content
for a single element. A Java-style pattern tag is defined,used can use this tag
to perform simple arithmetic operations (+ - * /), string qoosition, and random
sequence generation. This task can be nested, i.e., we carpatiern-generated
value as the argument as a parent pattern.

B.1 Basic Parsing Rules

When a XML element is parsed, its content will be evaluatedeting to the follow-
ing rules:

111

e If the content is a number, it will be exported directly.

¢ If the above condition fails, the parser will try to search ftobal variable hash by
using the content as key.

¢ If the above conditions fail, the parse will try to search kbeal variable hash by
using the content as key.

¢ Ifthe above conditions fail, the parse will try to evaludte tontent as an arithmetic
expression and return the value.

e A value -9999 will be exported if all of the above conditioad f

For convenience, some commonly used values are inserted igibbal hash by the
parser and can be accessed by the following key:

GAME _ID Game ID.

GAME _PATH The path to game-specific data.

AUCTION _PATH The path to auction-related data.

GAME _START_TIME Game starting time, in milliseconds.
GAME _END_TIME Game ending time, in milliseconds.

SEED The global random seed, it’s initialized to use the game ID.

INDEX The index (absolute order) of auction or agent (dependingvbith file is
parsed). Only available in the file that specifies agent'sepeace and the file
that specifies auctions used in the game.

AGENTID Current agent’s ID. Only available in the file that specifigerat’s prefer-
ence.

Besides these common keys, all parameters specified in thregame definition files
will also be hashed by their tag names and can be used.

B.2 Command Syntax and Examples

There are two ways of using GDL's programming constructa:efivant to export the
tag in the final output, we can insert a parameter cabedplateinside the tag, and use
one of the following commands as the value. Or, if we just warmtxecute the command
without outputting the tag, we can use a pair of special tatled<CVD>. . . </ CND>,
and include the command in the parameter “template” as Wélé commands that are
supported by GDL are explained in detail as follows:

112

for Used to repeatedly export all the children nodes until theld@mn on loop variable is
false. “for” can be used in an ordinary tag, where the tag,ekas all the children
tags will be exported. Or it can be used in special¢@lyD></ CVD>, where the
command will be executed, but the tag will not be exportedr{astioned earlier).
Required parameters:

e var: The name of the loop variable.
e from: The starting value of the variable.
e to: The ending value of the variable.

Here is an example for an ordinary tag:

<someTAG frome"1" to="2" var="X" tenplate="for">
<Chi | drenTags1>
<Chi |l drenTagsl. 1>...</Chil drenTagsl. 1>
<Chi | drenTagsl. 2>...</Chil drenTagsl. 2>
</ Chi | drenTags1>
</ someTAG>

The parsed result will be:

<soneTAG>
<Chi | drenTags1>
<Chi | drenTagsl. 1>...</Chil drenTagsl. 1>
<Chi | drenTagsl. 2>...</Chil drenTagsl. 2>
</ Chi | drenTags1>
<Chi | drenTags1>
<Chi | drenTagsl. 1>...</Chil drenTagsl. 1>
<Chi | drenTagsl. 2>...</Chil drenTagsl. 2>
</ Chi | drenTags1>
</ soneTAG>

var Used to set the tag’s content as the value of the variablefiueby parametevar .
For example, we can set a tag’s content to the value of thablarin the “for”
loop. Required parameters:

e var: The name of the variable whose value will be exportecasemnt.

Example:

<someTAG frome"1" to="2" var="X" tenplate="for">
<Chi | drenTagsl var="X" tenpl ate="var" />
<Chi | drenTags2>
<CMD from="1" to="2" var="Y" tenplate="for">
<Chil drenTags2.1 var="Y" tenplate="var" />
</ C\VD>
</ Chi | dr enTags2>
</ soneTAG>

113

The parsed result will be:

<soneTAG
<Chi | drenTags1>1</ Chi |l drenTagsl>
<Chi | drenTags2>
<Chi | drenTags2. 1>1</ Chi | drenTags?2. 1>
<Chi | drenTags?2. 1>2</ Chi | drenTags2. 1>
</ Chi | drenTags2>
<Chi | drenTags1>2</ Chi | drenTags1>
<Chi | drenTags2>
<Chi | drenTags2. 1>1</ Chi | drenTags?2. 1>
<Chi | drenTags?2. 1>2</ Chi | drenTags2. 1>
</ Chi | drenTags2>
</ someTAG>

seedsUsed to specify the random seed that will be used in all theesgient parsings.
Required parameters:

e type: The type of the seed.
Two types of seeds are available.

1. Use GAMEID only.
2. Use GAMEID and INDEX.

Example:

<C\VD type="2" tenpl ate="seeds" />

distribution Used to generate a value according to the distribution pdciRequired
parameters:

e distribution: The name of the distribution.

Currently there is only one distribution implemented novo(edistribution can be
included as needed).

e UNIFORM It takes two parameters, lower bound and higher bound. Note
that this distribution is actually the discrete uniformtdizution.

Example:

<deadl i ne di stribution="UN FORM' tenpl ate="distribution">
<par ans>
<param i ndex="1">1</ par an®
<par am i ndex="2">10</ par an»
</ par anms>
</ deadl i ne>

114

Parsed result:

<deadl| i ne>x</ deadl i ne>

Wherex is some discrete-uniform random number drawn between 1 @nd 1

declare Used to declare a new entry in the local variable hash. We taapecify
two children tags under “declare&NAME></ NAME> and<VALUE></ VALUE>.
Text enclosed bxNANMVE></ NAME> is the name of the next entry in local variable
hash. Text (or number) enclosed bYALUE></ VALUE> is the value of this
variable. Note that the text (or number) enclosd\NAWE and VALUE can also be
generated by GDL commands. Also note that if a hash entry thégltsame name
already exists, its value will be overwritten.

Example:

<CMD t enpl at e="decl are" >
<NAME>newVar i abl eEnt r y</ NAME>
<VALUE di stribution="UN FORM' tenplate="distribution">
<par ans>
<par am i ndex="1">10</ par an»
<par am i ndex="2">20</ par anp
</ par ans>
</ VALUE>
</ C\VD>

Above example will inserhewVar i abl eEnt ry into local variable hash, with
value randomly drawn from a discrete uniform distributi@tvieen 10 and 20.

endowment Originally it is used to generate agent-specific endowmdntimation. But
now it is used to generate any information that is game-fipemnd cannot be
generated by using above mechanism. This command will emeokuser-supplied
Java class (with predefined interface) and anything thattusted will be included
under the current tag. Required parameters:

e type: The name of the user-defined Java class.

Example:

<someTAG t ype="sone. user. cl ass" tenpl at e="endowrent" />

Parsed result:

<someTAG

what ever outputted by the object
</ someTAG>

115

pattern If we include atag namedpat t er n></ pat t er n>anywhere, it will be han-
dled in a special way. The idea for using such tag is to intcedaiway such that
we can compose a composite expression or string by inseringus parameters
into a pattern. Required parameters:

o format: The Java-style formatting string.
e type: Can bestring or value explained as follows.

There are two modes for “pattern”:

1. string The composite string, after parameters inserted will bes awithout
further post processing.
Example:

<DoSonePat t er n>
<pattern format="SOVETHI NG \{O\}-\{1\}" type="string">
<arg i ndex="0">X</arg>
<arg i ndex="1">Y</arg>
</ pattern>
</ DoSonePat t er n>

Parsed result, suppose X=1, Y=2:
<DoSonePat t er n>SOVETHI NG- 1- 2</ DoSonePat t er n>

2. value The composite string should be an arithmetic expressisnegult will
be calculated and outputted.
Example:

<DoSonePat t er n>
<pattern format="\{0\}*6+\{1\}" type="val ue">
<arg i ndex="0">X</arg>
<arg i ndex="1">Y</arg>
</ pattern>
</ DoSonePat t er n>

Parsed result, suppose X=1, Y=2:

<DoSonePat t er n>8</ DoSonePat t er n>

B.3 The Partial GDL Listings for the Dynamic Task Al-
location Problem

In the following three figures, we demonstrate how to use GDlejpresenting a
problem containing random variables. In particular, FggBr3 presents how to generate
random number of tasks, and assign random deadlines togasksated.

116

<game>
<ganelLen>840000</ ganeLen>
<t ot al Agent s>5</t ot al Agent s>
<phaseOneEndTi me>120000</ phaseOneEndTi me>
<nunResour ces>4</ nunResour ces>
<nun$l ot s>5</ nuntl ot s>
<nmsPer Sl ot >120000</ nsPer Sl ot >
<whenDynani cTaskConel n>2</ whenDynam cTaskConel n>
<nunft ati cTasks>6</ nuntt ati cTasks>
<m nDynam cTaskNunber >4</ m nDynami cTaskNunber >
<maxDynam cTaskNunber >8</ maxDynam cTaskNunber >
<m nSt ati cTaskVal ue>100</ m nSt ati cTaskVal ue>
<maxSt ati cTaskVal ue>1000</ maxSt ati cTaskVal ue>
<m nDynam cTaskVal ue>100</ m nDynam cTaskVal ue>
<maxDynam cTaskVal ue>1200</ maxDynam cTaskVal ue>
<r esour cesCap>4</resour cesCap>

</ gane>

Figure B.1: This is the main game file that defines importantgparameters mentioned
in Section 11.4.1.

117

<get GanePar ans>
<agent var="AGENTID' tenpl ate="var"/>
<t askPr ef erences>
<CMD type="2" tenpl at e="seeds"/>
<list frome"1" to="nunBtaticTasks" var="X" tenplate="for">
<t askPr ef Tupl e>
<task var="X" tenplate="var"/>
<val ue distribution="UN FORM' tenpl ate="distribution">
<par ans>
<param i ndex="1">ni nSt at i cTaskVal ue</ par an>
<param i ndex="2">nmaxSt at i cTaskVal ue</ par an»
</ par ans>
</ val ue>
<deadl i ne distribution="UNI FORM' tenplate="distribution">
<par ans>
<par am i ndex="1">2</ par anp<par am i ndex="2">nunBl ot s</ par an>
</ par ans>
</ deadl i ne>
<requi r edResour ces>
<CMD frome"1" to="nunResources" var="Y" tenplate="for">
<r esour ceTupl e>
<type var="Y" tenplate="var"/>
<quantity distribution="UN FORM' tenplate="distribution">
<par ans>
<par am i ndex="1">0</ par ankt<par am i ndex="2">1</ par an>
</ par ans>
</ quantity>
</ resour ceTupl e>
</ CVD>
</ requi redResour ces>
<requi redTasks>
<t askTupl e>
<task distribution="UN FORM' tenplate="distribution">
<par ans>
<par am i ndex="1">1</ par an»
<param i ndex="2">
<pattern format="0-1" type="val ue"><arg i ndex="0">X</arg></pattern>
</ par anp
</ par ans>
</ task>
<required distribution="UNI FORM' tenplate="distribution">
<par ans>
<par am i ndex="1">0</ par ankt<par am i ndex="2">1</ par an>
</ par ans>
</required>
</ taskTupl e>
</ requi redTasks>
</t askPr ef Tupl e>
</list>
</t askPref erences>
</ get GanePar ans>

Figure B.2: This figure lists the GDL used in defining agent&f@rence.

118

<get Event s>
<agent var="AGENTID' tenpl ate="var"/>
<CMD t enpl at e="decl are" >
<NAME>nunDynani cTasks</ NAVE>
<VALUE di stri bution="UN FORM' tenpl ate="distribution">
<par anms>
<param i ndex="1">ni nDynam cTaskNunber </ par an»>
<par am i ndex="2">maxDynam cTaskNunber </ par an»>
</ par ans>
</ VALUE>
</ C\ND>
<t askPr ef erences>
<CMD type="2" tenpl at e="seeds"/>
<list from="1" to="nunDynam cTasks" var="X" tenplate="for">
<t askPr ef Tupl e>
<t ask>
<pattern format="{0}+{1}" type="val ue">
<arg index="0">nunbt ati cTasks</arg><arg i ndex="1">X</ ar g>
</ pattern>
</task>
<CMD t enpl at e="decl are" >
<NAME>t askArri val Sl ot </ NAVE>
<VALUE di stribution="UNI FORM' tenpl ate="di stribution">
<par ans>
<par am i ndex="1">whenDynani cTaskConel n</ par an»
<param i ndex="2"><pattern format="{0}- {1}" type="val ue">
<arg index="0">nuntl ot s</ arg><arg i ndex="1">1</ar g>
</ pat t er n></ par an»
</ par ans>
</ VALUE>
</ C\VD>
<time>
<pattern format="{0}+{1}+{2}x{3}" type="val ue">
<arg index="0">GAME_START_TI ME</ ar g>
<arg i ndex="1">phaseOneEndTi ne</ ar g>
<arg index="2">taskArrival Sl ot </ arg>
<arg index="3">nsPer Sl ot </ ar g>
</ pattern>
</time>
<val ue distribution="UNI FORM' tenpl ate="distribution">
<par ans>
<par am i ndex="1">m nDynami cTaskVal ue</ par an»
<par am i ndex="2">maxDynani cTaskVal ue</ par an>
</ par ans>
</val ue>
<deadl i ne distribution="UNI FORM' tenplate="distribution">
<par ans>
<param i ndex="1">t askArri val Sl ot </ par an»
<par am i ndex="2">nunStl ot s</ par an®>
</ par ans>
</ deadl i ne>

</t askPr ef Tupl e>
</list>
</t askPref erences>
</ get Event s>

Figure B.3: This figure lists the GDL used in defining dynartycarriving tasks. Note
that the section that defines task’s parameter is identictdd fragment in Figure B.2,
therefore it is neglected here.

119

BIBLIOGRAPHY

Richard E. Allsop. SIGSET: A computer program for calculgtitraffic capacity of
signal-controlled road junction3raffic Engineering & Contrqgl13:58-60, 1971.

Richard E. Allsop. SIGCAP: A computer program for assessivagtraffic capacity of
signal-controlled road junction3raffic Engineering & Contrql17:338-341, 1976.

Steve Alpern and Dennis J. Snower. A search model of optimeing and produc-
tion. Discussion paper 224, Center for Economic Policy Bede London, United
Kingdom, 1988.

Kalidas Ashok and Moshe E. Ben-Akiva. Alternative appractor real-time estimation
and prediction of time-dependent origin-destination flowlgansportation Scienge
34(1):21-36, 2000.

Kalidas Ashok and Moshe E. Ben-Akiva. Estimation and prigalicof time-dependent
origin-destination flows a stockhastic mapping to path fland link flows. Trans-
portation Science36(2):184-198, 2002.

Lawrence M. Ausubel and Paul R. Milgrom. Ascending auctieith package bidding.
Frontiers of Theoretical Economic&(1), 2002.

F. Boillot, J.M. Blosseville, J.B. Lesort, V. Motyka, M. Pageorgiou, and S. Sellam.
Optimal signal control of urban traffic networks. @th International Conference on
Road Traffic Monitoring and Contrppages 75-79, London, England, 1992. IEE.

George W. Brown. lIterative solution of games by fictitiouayplIn Activity Analysis of
Production and Allocationpages 374—-376. John Wiley, New York, 1951.

Apostolos N. Burnetas and Craig E. Smith. Adaptive ordeand pricing for perishable
products.Operations Researcid8(3):436—443, 2000.

Xin Chen and David Simchi-Levi. Coordinating inventory t@hand pricing strategies
with random demand and fixed ordering cost: The finite horizase. Operations
Research52(6):887-896, 2004.

Xin Chen and David Simchi-Levi. Coordinating inventory tahand pricing strategies
with random demand and fixed ordering cost: The infinite lorigase Mathematics
of Operations Resear¢c9(3):698—-723, 2004.

120

John Q. Cheng and Michael P. Wellman. The WALRAS algorithmcohvergent dis-
tributed implementation of general-equilibrium outcom@smputational Economi¢s
12:1-24,1998.

Shih-Fen Cheng and Michael P. Wellman. Iterated weaker-theak dominance. In
Twentieth International Joint Conference on Artificialétiigence to appear, Hyder-
abad, India, 2007.

Shih-Fen Cheng, Daniel M. Reeves, Yevgeniy Vorobeychikl Biichael P. Wellman.
Notes on equilibria in symmetric games.AAMAS-04, Workshop on Game Theoretic
and Decision Theoretic Agentdew York City, NY, August 2004.

Shih-Fen Cheng, Michael P. Wellman, and Dennis G. Perry.kbtavased resource al-
location for information-collection scenarios. In Koidkurumatani, Shu-Heng Chen,
and Azuma Ohuchi, editor§jultiagent for Mass User Support (MAMUS-08blume
3012 ofLecture Notes in Computer Scienpages 33—47. Springer, Jan 2004.

Shih-Fen Cheng, Archis Ghate, Stephen Baumert, Daniel ReaDushyant Sharma,
and Robert L. Smith. A fast algorithm for joint optimizatiah capital investment,
revenue management and production scheduling in manufagtystems. IOE Tech-
nical Report 05-05, 2005.

Shih-Fen Cheng, Evan Leung, Kevin M. Lochner, Kevin O'MglIBaniel M. Reeves,
Julian L. Schvartzman, and Michael P. Wellman. WalverineWAlrasian trading
agent.Decision Support Systen9:169-184, 2005.

Shih-Fen Cheng, Blake Nicholson, Marina A. Epelman, DaRehume, and Robert L.
Smith. A dynamic programming approach to the end-statel@nob\Working paper,
2006.

Shih-Fen Cheng, Marina A. Epelman, and Robert L. Smith. GOSIA parallel algo-
rithm for coordinated traffic signal controlEEE Transactions on Intelligent Trans-
portation Systemdo appear, 2007.

Kwok-Yuen Cheung, Chi-Wai Hui, Haruo Sakamoto, Kentaroakéiy and Lionel
O’Young. Short-term site-wide maintenance scheduli@pmputers and Chemical
Engineering 28:91-102, 2004.

Scott Clearwater, editorMarket-Based Control: A Paradigm for Distributed Resource
Allocation World Scientific, 1995.

Vincent Conitzer and Tuomas Sandholm. Complexity resddtsiaNash equilibria. In
Eighteenth International Joint Conference on Artificiatdhigence pages 765771,
2003.

Peter Cramton. Ascending auctiong&uropean Economic Review?2(3-5):745-756,
1998.

121

Paolo Dell’OImo and Pitu B. Mirchandani. REALBAND: An aprch for real-time
coordination of traffic flows on a networkransportation Research Reco#94:106—
116, 1995.

Paolo Dell’lOlmo and Pitu B. Mirchandani. A model for reahe traffic coordination
using simulation based optimization. In L. Bianco and PhJa&ditors,Advanced
Methods in Transportation Analysigages 525-546. Springer, 1996.

Johann Dréo, Alain Pétrowski, Patrick Siarry, and Eriglaed. Metaheuristics for Hard
Optimization: Methods and Case Studi&pringer, 2006.

Alex Fabrikant, Christos Papadimitriou, and Kunal Talwgtie complexity of pure Nash
equilibria. InThirty-Sixth Annual ACM Symposium on Theory of Computii®@&
04), pages 604—-612, 2004.

Robin FarquharsorTheory of Voting Yale University Press, New Haven, 1969.

Awi Federgruen and Aliza Heching. Combined pricing and im@ey control under un-
certainty.Operations Researcld 7(3):454—-475, 1999.

Youyi Feng and Youhua Chen. Joint pricing and inventory mmith setup costs and
demand uncertainty. Working paper, 2003.

Youyi Feng and Youhua Frank Chen. Optimality and optim@abf a joint pricing and
inventory-control policy for a periodic-review system. ¥img paper, 2004.

Daniel Friedman and John Rust, editoffie Double Auction MarketAddison-Wesley,
1993.

Drew Fudenberg and Jean Tirol8ame TheoryMIT Press, 1991.

Alfredo Garcia, Daniel Reaume, and Robert L. Smith. Fiotii play for finding system
optimal routings in dynamic traffic network3ransportation Research,B4(2):146—
157, February 2000.

Nathan H. Gartner, Farhad J. Pooran, and Christina M. Anglrémvplementation of the
opac adaptive control strategy in a traffic signal networkPioceedings of the IEEE
Intelligent Transportation Systems Conferenuages 195-200. 2001.

Nathan H. Gartner. OPAC: A demand-responsive strategydéird signal controlTrans-
portation Research Recqr806:75-81, 1983.

Archis Ghate, Marina Epelman, and Robert L. Smith. Samptiidius play for black-
box stochastic sequential decision problems. TechnicabR&6-02, University of
Michigan, 2006.

Itzhak Gilboa, Ehud Kalai, and Eitan Zemel. On the order ahigating dominated
strategiesOperations Research Lette®(2):85-89, 1990.

122

Fred Glover. Future paths for integer programming and liokartificial intelligence.
Computers & Operations Researd8(5):533-549, 1986.

Amy Greenwald and Justin Boyan. Bidding algorithms for diameous auctions. In
Third ACM Conference on Electronic Commergages 115-124, New York, NY,
USA, 2001. ACM Press.

Amy Greenwald and Justin Boyan. Bidding under uncertaititgory and experiments.
In Twentieth Conference on Uncertainty in Artificial Intetligce pages 209-216.
AUAI Press, 2004.

Michael R. Hagerty, James M. Carman, and Gary J. Russeim&ihg elasticities with
PIMS data: Methodological issues and substantive impiinatJournal of Marketing
Research25(1):1-9, 1988.

Jean-Jacques Henry and Jean-Loup Farges. PRODY®th iFAC/IFIP/IFORS Sympo-
sium on Control, Computers and Communications in Trangjiomn, pages 253255,
1989.

Jean-Jacques Henry, Jean-Loup Farges, and J. Tuffal. TO®PR real time traffic
algorithm. In4th IFAC/IFIP/IFORS Conference on Control in TransportatiSystems
pages 305-310, 1983.

Tsin Hing Heung, Tin Kin Ho, and Yu Fai Fung. Coordinated rgaiction traffic control
by dynamic programminglEEE Transactions on Intelligent Transportation Systems
6(3):341-350, September 2005.

P. B. Hunt, D. I. Robertson, R. D. Bretherton, and R. I. WintaBCOOT - a traffic
responsive method for coordinating signalsLaboratory Report no. LP 1014 rans-
portation and Road Research, Crowthorne, Berkshire, BdglED81.

Michael Kearns, Michael L. Littman, and Satinder Singh. f@iaal models for game
theory. InSeventeenth Conference on Uncertainty in Artificial lidelhce pages 253—
260, 2001.

Christopher Kiekintveld, Michael P. Wellman, , and Satin@angh. Empirical game-
theoretic analysis of chaturanga. MAMAS-06 Workshop on Game-Theoretic and
Decision-Theoretic Agent2006.

Theodore J. Lambert and Hua Wang. Fictitious play approaehnobile unit situation
awareness problem. Technical report, University of Miahnig2003.

Theodore J. Lambert, Marina A. Epelman, and Robert L. SmiHictitious play ap-
proach to large-scale optimizatiofDperations Researctb3(3):477-489, May-June
2005.

C. E. Lemke and J. T. Howson. Equilibrium points of bimatraanges. Journal of the
Society for Industrial and Applied Mathematid®(2):413-423, 1964.

123

Kevin Leyton-Brown and Moshe Tennenholtz. Local-effeanga. InEighteenth Inter-
national Joint Conference on Artificial Intelligengeages 772—-780, 2003.

Wei-Hua Lin and Chenghong Wang. An enhanced 0-1 mixed-@nté§ formulation
for traffic signal control. IEEE Transactions on Intelligent Transportation Systems
5(4):238-245, December 2004.

John D. C. Little, M. D. Kelson, and Nathan H. Gartner. MAXBBNA program for
setting signals on arteries and triangular networksansportation Research Record
795, 1981.

John D. C. Little. The synchronization of traffic signals bixed-integer linear program-
ming. Operations Researcli4(4):568-594, 1966.

Kevin M. Lochner and Michael P. Wellman. Rule-based speatific of auction mecha-
nisms. InThird International Joint Conference on Autonomous AgantsMulti-Agent
Systemgspages 818-825, 2004.

R Duncan Luce and Howard Raiff&@ames and Decision®Viley, New York, 1957.

Jeffrey K. MacKie-Mason and Michael Wellman. Automated kets and trading agents.
In Leigh Tesfatsion and Kenneth L. Judd, editdd#sndbook of Computational Eco-
nomics Vol. 2: Agent-Based Computational Econoptitzsxdbooks in Economics Se-
ries. North-Holland, 2006.

Jeffrey K. MacKie-Mason, Anna Osepayshvili, Daniel M. Regvand Michael P. Well-
man. Price prediction strategies for market-based scheguln Fourteenth Interna-
tional Conference on Automated Planning and Schedupages 244-252, 2004.

V. Mauro and D. DiTaranto. UTOPIA. 16th IFAC/IFIP/IFORS Symposium on Control,
Computers and Communications in Transportatioages 245—-252, 1989.

Richard D. McKelvey and Andrew McLennan. Computation ofiélgtia in finite games.
In Handbook of Computational Economiemlume 1. Elsevier, 1996.

A. J. Miller. A computer control system for traffic network&n Second International
Symposium on the Theory of Road Traffic Flpages 200-220, 1965.

Pitu B. Mirchandani and Larry Head. A real-time traffic sioantrol system: Architec-
ture, algorithms, and analysi$transportation Research,®(6):415-432, 2001.

Pitu B. Mirchandani and Fei-Yue Wang. RHODES to intelliggahsportation systems.
IEEE Intelligent System&0(1):10-15, 2005.

Dov Monderer and Lloyd S. Shapley. Fictitious play propddygames with identical
interests.Journal of Economic Theoy8(1):258—-265, 1996.

Herve Moulin. Dominance solvable voting schemé&sonometrica47(6):1337-1352,
November 1979.

124

John F. Nash. Equilibrium points in n-person games.Ptaceeding of the National
Academy of Scienceglume 36, pages 48—49, 1950.

Eugene Nudelman, Jennifer Wortman, Kevin Leyton-Browrd &oav Shoham. Run
the GAMUT: A comprehensive approach to evaluating gamertte algorithms. In
Third International Joint Conference on Autonomous Agent$ Multiagent Systems
pages 880 — 887, 2004.

Anna Osepayshvili, Michael P. Wellman, Daniel M. Reeves] deffrey K. MacKie-
Mason. Self-confirming price prediction for bidding in sitameous ascending auc-
tions. InTwenty-First Conference on Uncertainty in Artificial Irltigeénce pages 441—
449, July 2005.

Christos H. Papadimitriou and Tim Roughgarden. Computmgléria in multi-player
games. InSixteenth Annual ACM-SIAM Symposium on Discrete Algostipages
82-91, 2005.

Nicholas C. Petruzzi and Magbool Dada. Dynamic pricing anvemtory control with
learning.Naval Research Logisticd49(3):303-325, 2002.

Daniel Reeves, Michael Wellman, Jeffrey MacKie-Mason, Anda Osepayshvili. Ex-
ploring bidding strategies for market-based schedulimecision Support Systeins
39(1):67-85, 2005.

Dennis |. Robertson. TRANSYT method for area traffic contiivhffic Engineering &
Control, 10:276-281, 1969.

Robert W. Rosenthal. A class of games possessing puregriiash equilibrialnter-
national Journal of Game Thear2:65-67, 1973.

Robert W. Rosenthal. The network equilibrium problem iregers.Networks 3:53-59,
1973.

L. Julian Schvartzman and Michael P. Wellman. Market-badledation with indivisible
bids. To appear in Production and Operations Managemen06.

Suvrajeet Sen and Larry K. Head. Controlled optimizatiopludises at an intersection.
Transportation Scien¢81:5-17, 1997.

Arthur G. Sims. The Sydney coordinated adaptive trafficeyst In Urban Transport
Division of ASCE Proceedingpages 12—27, New York, NY, 1979.

Peter Stone, Michael L. Littman, Satinder Singh, and Mith&arns. ATTac-2000:
An adaptive autonomous bidding agerournal of Artificial Intelligence Research
15:189-206, 2001.

Peter Stone, Robert E. Schapire, Michael L. Littman, Ja’Ao<sirik, and David
McAllester. Decision-theoretic bidding based on learnedsity models in simulta-
neous, interacting auctionslournal of Artificial Intelligence Researchi9:209-242,
2003.

125

Saroja Subrahmanyan and Robert W. Shoemaker. Developimyadjpricing and inven-
tory policies for retailers who face uncertain demasalrnal of Retailing72(1):7-30,
1996.

Jayashankar M. Swaminathan and Sridhar R. Tayur. Tacti@ahmg models for supply
chain management. In A. G. de Kok and S. C. Graves, edangply Chain Manage-
ment: Design, Coordination and Operatiovolume 11 ofHandbooks in Operations
Research and Management Scieratepter 8. Elsevier, Amsterdam, 2003.

M. Van Aerde, J. Voss, and G. McKinnoINTEGRATION Simulation Model User’s
Guide Queen’s University, 1989.

John von Neumann and Oskar MorgensteFheory of Games and Economic Behavior
Princeton University Press, Princeton, second edition719

Yevgeniy Vorobeychik, Christopher Kiekintveld, and Mighd®. Wellman. Empirical
mechanism design: Methods, with application to a supplyrcheenario. InfSeventh
ACM Conference on Electronic Commerpages 306—-315, Ann Arbor, 2006.

F. V. Webster and B. M. Cobbdraffic Signals Road Research Technical Report 39, Her
Majesty’s Stationery Office, London, 1958.

Michael P. Wellman and Peter R. Wurman. Market-aware agentsmultiagent world.
Robotics and Autonomous Syste@#%115-125, 1998.

Michael P. Wellman, Peter R. Wurman, Kevin OMalley, Roshamdgera, Shou de Lin,
Daniel Reeves, , and William E. Walsh. Designing the marketdg for a trading agent
competition.IEEE Internet Computings(2):43-51, 2001.

Michael P. Wellman, Shih-Fen Cheng, Daniel M. Reeves, anirid. Lochner. Trading
agents competing: Performance, progress, and marketiedfieess.|[EEE Intelligent
Systemsl8(6):48-53, 2003.

Michael P. Wellman, Amy Greenwald, Peter Stone, and PetaiRman. The 2001
Trading Agent CompetitionElectronic Markets13:4-12, 2003.

Michael P. Wellman, Daniel M. Reeves, Kevin M. Lochner, ar¢eniy Vorobeychik.
Price prediction in a trading agent competitiakournal of Artificial Intelligence Re-
search 21:19-36, 2004.

Michael P. Wellman, Daniel M. Reeves, Kevin M. Lochner, ShRén Cheng, and Rahul
Suri. Approximate strategic reasoning through hierardhieduction of large symmet-
ric games. IMfwentieth National Conference on Artificial Intelligenpages 502-508,
Pittsburgh, 2005.

Michael P. Wellman, Daniel M. Reeves, Kevin M. Lochner, arah&® Suri. Searching
for Walverine 2005. InJCAI-05 Workshop on Trading Agent Design and Analysis
Edinburgh, 2005.

126

Michael P. Wellman, Patrick R. Jordan, Christopher Kiekahd, Jason Miller, and
Daniel M. Reeves. Empirical game-theoretic analysis oftA€ market games. In
AAMAS-06 Workshop on Game-Theoretic and Decision-ThHedxgents 2006.

Michael P. Wellman. A market-oriented programming envin@mt and its application to
distributed multicommaodity flow problemsournal of Artificial Intelligence Research
1:1-23, 1993.

Karl E. Wunderlich and Robert L. Smith. Large scale trafficd®ling for route guidance
evaluation: A case study. IVHS Program Technical Repor®82The Univerisity of
Michigan, 1992.

Karl E. Wunderlich, David E. Kaufman, and Robert L. Smithnk.itravel time predic-
tion for decentralized route guidance architectudldEE Transactions on Intelligent
Transportation System$(1):4—14, March 2000.

Karl E. Wunderlich.Link Travel Time Prediction for Dynamic Route Guidance ihive
ular Traffic Networks PhD thesis, University of Michigan, 1994.

Peter R. Wurman, Michael P. Wellman, , and William E. Walshe Michigan Internet
AuctionBot: A configurable auction server for human andwafe agents. Ii$econd
International Conference on Autonomous Agepé&gjes 301-308, Minneapolis, 1998.

Peter R. Wurman, Michael P. Wellman, and William E. Walsh. akgmetrization of the
auction design spac&ames and Economic Behavj&5:304-338, 2001.

Sam Yagar and Bin Han. A procedure for real-time signal adnikrat considers transit
interference and priorityTransportation Research,28(4):315-331, 1994.

Fredrik Ygge and Hans Akkermans. Decentralized marketsugecentral control: A
comparative studydournal of Artificial Intelligence Researcth1:301-333, 1999.

Li Zhang, Peter B. Luh, and Krishnan Kasiviswanathan. Epnelgaring price prediction
and confidence interval estimation with cascaded neuralorks. IEEE Transactions
on Power System48(1):99-105, February 2003.

127

